Synthesis, Structure, and Thermal Properties of Scandium(III) and Iron(III) Complexes with 3-Methyl-2,4-Pentanedione as Precursors for Chemical Gas-Phase Processes
- Autores: Makarenko A.M.1, Kuratieva N.V.1, Pishchur D.P.1, Zherikova K.V.1
- 
							Afiliações: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
 
- Edição: Volume 68, Nº 2 (2023)
- Páginas: 221-228
- Seção: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://cardiosomatics.ru/0044-457X/article/view/665306
- DOI: https://doi.org/10.31857/S0044457X22601444
- EDN: https://elibrary.ru/LPGSNT
- ID: 665306
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Complexes Sc(Meacac)3 and Fe(Meacac)3 (Meacac is 3-methyl-2,4-pentanedionate anion) have been synthesized, and their crystal structures have been first determined by X-ray diffraction. The volatility and thermal stability of the obtained compounds have been studied. The temperature, enthalpy, and entropy of melting of the complexes have been determined by differential scanning calorimetry. The flow method has been used to obtain the temperature dependence of the saturated vapor pressure of Sc(Meacac)3 in the range 414–472 K, from which the thermodynamic characteristics of the sublimation process have been calculated at an average temperature (
 = 132.8 ± 1.8 kJ/mol, 
 = 226.1 ± 4.6 J/(K mol)) and at 298.15 K (
 = 143.9 ± 2.6 kJ/mol, 
= 256.5 ± 6.4 J/(K mol)). The compounds studied can be used as precursors in chemical vapor deposition, and the set of obtained thermodynamic data can be used to select the optimal deposition conditions.
Sobre autores
A. Makarenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: ksenia@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
N. Kuratieva
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: ksenia@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
D. Pishchur
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: ksenia@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
K. Zherikova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: ksenia@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
Bibliografia
- Игуменов И.К., Чуманенко Ю.В., Земсков С.В. Проблемы химии и применения β-дикетонатов металлов / Под ред. Спицына В.И. М.: Наука, 1982. С. 100.
- Громилов С.А. Байдина И.А. // Журн. структур. химии. 2004. Т. 45. № 6. С. 1076.
- Moshier R.W., Sievers R.E. Gas Chromotography of Metal Chelates: International series of monographs in analytical chemistry. Pergamon Press: Oxford, 1967.
- Жаркова Г.И., Стабников П.А., Сысоев С.А. и др. // Журн. структур. химии. 2005. Т. 46. № 2. С. 328.
- Варнек В.А., Игуменов И.К., Стабников П.А. и др. // Журн. структур. химии. 2001. Т. 42. № 5. С. 1024.
- Igumenov I.K., Basova T.V., Belosludov V.R. Application of Thermodynamics to Biological and Materials Science / Ed. Tadashi M. London: InTech, 2011. P. 521.
- Stabnikov P.A., Alferova N.I., Korolkov I.V. et al. // J. Struct. Chem. 2020. V. 61. № 10. P. 1615. https://doi.org/10.1134/S0022476620100145
- Robertson I., Truter M.R. // Inorg. Phys. Theor. 1967. P. 309.
- Шапкин Н.П., Алехина О.Г., Реутов В.А. и др. // Журн. общ. химии. 1992. Т. 62. № 3. С. 505.
- Abrahams B.F., Hoskins B.F., McFadyen D.W. et al. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998. V. 54. № 12. P. 1807. https://doi.org/10.1107/S0108270198008592
- Döhring A., Goddard R., Jolly P.W. et al. // Inorg. Chem. 1997. V. 36. № 2. P. 177. https://doi.org/10.1021/ic960441c
- Berg M.A.G., Ritchie M.K., Merola J.S. // Polyhedron. 2012. V. 38. № 1. P. 126. https://doi.org/10.1016/j.poly.2012.02.024
- Ribeiro da Silva M.A.V., Ferrao M.L.C.C.H., Silva R.M.G.E. da // J. Chem. Thermodyn. 1992. V. 24. P. 1293.
- Zherikova K.V., Zelenina L.N., Chusova T.P. et al. // Phys. Procedia. 2013. V. 46. P. 200. https://doi.org/10.1016/j.phpro.2013.07.068
- Zelenina L.N., Zherikova K.V., Chusova T.P. et al. // Thermochim. Acta. 2020. V. 689. P. 178639. https://doi.org/10.1016/j.tca.2020.178639
- Zherikova K.V., Verevkin S.P. // RSC Adv. 2020. V. 10. № 63. P. 38158. https://doi.org/10.1039/d0ra06880b
- Kong P., Pu Y., Ma P. et al. // Thin Solid Films. 2020. V. 714. P. 1. https://doi.org/10.1016/j.tsf.2020.138357
- De Rouffignac P., Yousef A.P., Kim K.H. et al. // Electrochem. Solid-State Lett. 2006. V. 9. № 6. P. 45. https://doi.org/10.1149/1.2191131
- Smirnova T.P., Yakovkina L.V., Borisov V.O. et al. // J. Struct. Chem. 2017. V. 58. № 8. P. 1573. https://doi.org/10.1134/S0022476617080145
- Stognii A.I., Serokurova A.I., Smirnova M.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 12. P. 1822. https://doi.org/10.1134/S0036023621120196
- Bumagin N.A. // Russ. J. Gen. Chem. 2022. V. 92. № 5. P. 832. https://doi.org/10.1134/S1070363222050127
- Bruker AXS Inc. (2004). APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11). Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.
- Sheldrick G.M. // Acta Crystallogr. 2015. V. C71. P. 3.
- Zherikova K.V., Makarenko A.M., Karakovskaya K.I. et al. // Russ. J. Gen. Chem. V. 91. № 10. P. 1990. https://doi.org/10.1134/S1070363221100108
- Anderson T.J., Neuman M.A., Melson G.A. // Inorg. Chem. 1973. V. 12. № 4. P. 927. https://doi.org/10.1021/ic50122a046
- Diaz-Acosta I., Baker J., Cordes W. et al. // J. Phys. Chem. A. 2001. V. 105. № 1. P. 238. https://doi.org/10.1021/jp0028599
- Beech G., Lintonbon R.M. // Thermochim. Acta. 1971. V. 3. P. 97.
- Sabolović J., Mrak Ž., Koštrun S. et al. // Inorg. Chem. 2004. V. 43. № 26. P. 8479. https://doi.org/10.1021/ic048900u
- Kulikov D., Verevkin S.P., Heintz A. // J. Chem. Eng. Data. 2001. V. 46. № 6. P. 1593. https://doi.org/10.1021/je010187p
- Kulikov D., Verevkin S.P., Heintz A. // Fluid Phase Equilib. 2001. V. 192. № 1–2. P. 187. https://doi.org/10.1016/S0378-3812(01)00633-1
- Zherikova K.V., Verevkin S.P. // Fluid Phase Equilib. 2018. V. 472. P. 196. https://doi.org/10.1016/j.fluid.2018.05.004
- Verevkin S.P., Emel’yanenko V.N., Zherikova K.V. et al. // Chem. Phys. Lett. 2020. V. 739. P. 136911. https://doi.org/10.1016/j.cplett.2019.136911
- Melia T.P., Merrifield R. // J. Inorg. Nucl. Chem. 1970. V. 32. P. 2573.
- Verevkin S.P., Sazonova A.Y., Emel’yanenko V.N. et al. // J. Chem. Eng. Data. 2015. V. 60. P. 89. https://doi.org/doi.org/10.1021/je500784s
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





