Magnetic Photocatalysts Based on Nanocrystalline Manganese-Doped Titanium Dioxide
- Авторлар: Zheleznov V.V.1, Tkachenko I.A.1, Ziatdinov A.M.1, Opra D.P.1, Vasilyeva M.S.1, Saritsky D.A.1, Tarasov E.V.1, Kuryavyi V.G.1
- 
							Мекемелер: 
							- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
 
- Шығарылым: Том 68, № 1 (2023)
- Беттер: 105-114
- Бөлім: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://cardiosomatics.ru/0044-457X/article/view/665335
- DOI: https://doi.org/10.31857/S0044457X22100518
- EDN: https://elibrary.ru/GULEEP
- ID: 665335
Дәйексөз келтіру
Аннотация
Manganese-doped anatase with a nanosized morphology (as spherically shaped nanoparticles) has been synthesized under hydrothermal conditions. It has been shown that manganese is incorporated into the titanium dioxide structure to form substitutional solid solutions. At high dopant concentrations, part of the introduced manganese goes to the formation of α-MnO2. A significant increase in the optical activity in the visible range and a decrease in the bandgap width down to ~2.4 eV are observed for manganese-doped anatase because of the appearance of extrinsic (multivalent Mn ions) and intrinsic compensating (oxygen vacancies) defects. It has been found that manganese-doped samples are diluted magnetic semiconductors, and the magnetic characteristics increase with increasing manganese content. All manganese-containing samples demonstrate photocatalytic activity in the degradation reaction of indigo carmine when irradiated with visible light. The degree of dye degradation depends on the content of manganese in the samples and reaches >90%.
Негізгі сөздер
Авторлар туралы
V. Zheleznov
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
														Email: zhvv53@mail.ru
				                					                																			                												                								690022, Vladivostok, Russia						
I. Tkachenko
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
														Email: zhvv53@mail.ru
				                					                																			                												                								690022, Vladivostok, Russia						
A. Ziatdinov
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
														Email: zhvv53@mail.ru
				                					                																			                												                								690022, Vladivostok, Russia						
D. Opra
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
														Email: zhvv53@mail.ru
				                					                																			                												                								690022, Vladivostok, Russia						
M. Vasilyeva
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
														Email: zhvv53@mail.ru
				                					                																			                												                								690022, Vladivostok, Russia						
D. Saritsky
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
														Email: zhvv53@mail.ru
				                					                																			                												                								690022, Vladivostok, Russia						
E. Tarasov
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
														Email: zhvv53@mail.ru
				                					                																			                												                								690022, Vladivostok, Russia						
V. Kuryavyi
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
							Хат алмасуға жауапты Автор.
							Email: zhvv53@mail.ru
				                					                																			                												                								690022, Vladivostok, Russia						
Әдебиет тізімі
- Umar K., Aris A., Ahmad H. et al. // J. Anal. Sci. Technol. 2016. V. 7. № 1. P. 29. https://doi.org/10.1186/s40543-016-0109-2
- Loan T.T., Long N.N. // Commun. Phys. 2019. V. 29. № 3. P. 251. https://doi.org/10.15625/0868-3166/29/3/13854
- Пячин С.А., Карпович Н.Ф., Зайцев А.В. и др. // Фундаментальные исследования. 2017. № 10. P. 261.
- Красильников В.Н., Жуков В.П., Переляева Л.А. и др. // Физика твердого тела 2013. V. 55. № 9. P. 1788.
- Baklanova I.V., Krasil’Nikov V.N., Zhukov V.P. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 2. P. 29. https://doi.org/10.7868/80044457X14020044
- Opra D.P., Gnedenkov S.V., Sinebryukhov S.L. et al. // Chem. Phys. 2020. V. 538. P. 110864. https://doi.org/10.1016/j.chemphys.2020.110864
- Оболенская Л.Н., Кузьмичева Г.М., Зубавичус Я.В. и др. // Пат. РФ № 2565689 // Бюл. изобр. 2015. № 29. С. 14.
- Nguyen K.C., Nguyen N.M., Duong V.Q. et al. // J. Electron. Mater. 2021. V. 50. № 4. P. 1942. https://doi.org/10.1007/s11664-020-08699-2
- He Z., Hong T., Chen J. et al. // Sep. Purif. Technol. 2012. V. 96. P. 50. https://doi.org/10.1016/j.seppur.2012.05.005
- Makarevich O.N., Ivanov A.V., Gavrilov A.I. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 3. P. 299. https://doi.org/10.31857/S0044457X20030083
- Kozlov D.A., Tikhonova S.A., Evdokimov P.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 12. P. 1958. https://doi.org/10.31857/S0044457X20120090
- Saber O., Kotb H.M., Osama M. et al. // Nanomaterials. 2022. V. 12. № 3. P. 440. https://doi.org/10.3390/nano12030440
- Noman M.T., Ashraf M.A., Ali A. // Environ. Sci. Pollut. Res. 2019. V. 26. № 4. P. 3262. https://doi.org/10.1007/s11356-018-3884-z
- Пугачевский М.А., Мамонтов В.А., Николаева С.Н. и др. // Изв. Юго-Западного гос. ун-та. Серия Техника и технологии 2021. V. 11. № 2. P. 104.
- Ali I., Suhail M., Alothman Z.A. et al. // RSC Adv. 2018. V. 8. № 53. P. 30125. https://doi.org/10.1039/C8RA06517A
- Zakharova G.S., Fattakhova Z.A., Puzyrev I.S. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 3. P. 283. https://doi.org/10.1134/S0044457X19030231
- Kuryavyi V.G., Ustinov A.Y., Opra D.P. et al. // Mater. Lett. 2014. https://doi.org/10.1016/j.matlet.2014.09.007
- Luo W., Taleb A. // Nanomaterials. 2021. V. 11. № 2. P. 365. https://doi.org/10.3390/nano11020365
- López Zavala M.Á., Lozano Morales S.A., Ávila-Santos M. // Heliyon. 2017. V. 3. № 11. P. E00456. https://doi.org/10.1016/j.heliyon.2017.e00456
- Simonenko T.L., Bocharova V.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 459. https://doi.org/10.31857/S0044457X20040182
- Taran G.S., Baranchikov A.E., Ivanova O.S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 6. P. 800. https://doi.org/10.31857/S0044457X20060239
- Cherkasov F.G., Ovchinnikov I.V., Turanov A.N. et al. // Low Temp. Phys. (English Transl. Fiz. Nizk. Temp.) 1997. V. 23. № 2. P. 174.
- Wang S., Guan A., Wang J. et al. // Facile synthesis of a high purity α-MnO2 nanorod for rapid degradation of Rhodamine B, Research Square, 2021. https://doi.org/10.21203/rs.3.rs-679600/v1
- Williams F. // J. Chem. Educ. 2009. V. 86. № 1. P. 33. https://doi.org/10.1021/ed086p33
- Sakaguchi Miyamoto N., Miyamoto R., Giamello E. et al. // Res. Chem. Intermed. 2018. V. 44. № 7. P. 4563. https://doi.org/10.1007/s11164-018-3468-z
- Müller K.A. // Phys. Rev. Lett. 1959. V. 2. № 8. P. 341. https://doi.org/10.1103/PhysRevLett.2.341
- Serway R.A., Berlinger W., Müller K.A. et al. // Phys. Rev. B. 1977. V. 16. № 11. P. 4761. https://doi.org/10.1103/PhysRevB.16.4761
- Amorelli A., Evans J.C., Rowlands C.C. // J. Chem. Soc., Faraday Trans. 1. Phys. Chem. Condens. Phases. 1989. V. 85. № 12. P. 4031. https://doi.org/10.1039/f19898504031
- Castner T., Newell G.S., Holton W.C. et al. // J. Chem. Phys. 1960. V. 32. № 3. P. 668. https://doi.org/10.1063/1.1730779
- Cordischi D., Valigi M., Gazzoli D. et al. // J. Solid State Chem. 1975. V. 15. № 1. P. 82. https://doi.org/10.1016/0022-4596(75)90274-1
- Yang G., Jiang Z., Shi H. et al. // J. Mater. Chem. 2010. V. 20. № 25. P. 5301. https://doi.org/10.1039/c0jm00376j
- Serwicka E., Schindler R.N. // Z. Naturforsch., A. 1981. V. 36. № 9. P. 992. https://doi.org/10.1515/zna-1981-0910
- Hoffmann M.R., Martin S.T., Choi W. et al. // Chem. Rev. 1995. V. 95. № 1. P. 69. https://doi.org/10.1021/cr00033a004
- Coey J.M.D., Venkatesan M., Fitzgerald C.B. // Nat. Mater. 2005. V. 4. № 2. P. 173. https://doi.org/10.1038/nmat1310
- Ermakov A.E., Uimin M.A., Korolev A.V. et al. // Phys. Solid State. 2017. V. 59. № 3. P. 469. https://doi.org/10.1134/S1063783417030106
- Smirnova N., Petrik I., Vorobets V. et al. // Nanoscale Res. Lett. 2017. V. 12. № 1. P. 239. https://doi.org/10.1186/s11671-017-2002-3
- Keлип А.А., Петрик И.С., Довбешко Г.И. и др. // Ученые записки Таврического национального университета им. В.И. Вернадского. Серия биология, химия. 2013. V. 26. № 3. P. 261.
- Wang Y., Zhang R., Li J. et al. // Nanoscale Res. Lett. 2014. V. 9. № 1. P. 46. https://doi.org/10.1186/1556-276X-9-46
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Рұқсат ақылы немесе тек жазылушылар үшін
		                                							Рұқсат ақылы немесе тек жазылушылар үшін
		                                					







