Phase Equilibria and Chemical Reactions in the Mn2O3–ZnO–SiO2, Mn3О4–ZnO–SiO2 и MnO–ZnO–SiO2 Systems
- 作者: Zaitseva N.A.1,2, Samigullina R.F.1, Ivanova I.V.1, Krasnenko T.I.1
- 
							隶属关系: 
							- Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences
- Ural State Mining University
 
- 期: 卷 68, 编号 12 (2023)
- 页面: 1779-1785
- 栏目: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://cardiosomatics.ru/0044-457X/article/view/666067
- DOI: https://doi.org/10.31857/S0044457X23601347
- EDN: https://elibrary.ru/RMQNLO
- ID: 666067
如何引用文章
详细
The subject matter of this work was the triangulation of the Mn2O3–ZnO–SiO2, Mn3O4–ZnO–SiO2, and MnO–ZnO–SiO2 systems and the determination of phase transformations to yield Zn2 – 2хMn2хSiO4 solid solution. Equilibrium phase diagrams have been plotted taking into account the existence temperatures of each of the manganese oxides, phase compositions of the constituent binary systems, and checkup points, whose phase compositions helped us to determine the positions of secondary triangles. The phase compositions of reaction products of the terminal oxides and the phase transformation sequence during Zn2 – 2хMn2хSiO4 synthesis were monitored by X-ray powder diffraction and thermal analysis. Phase ratios in the MnOх–ZnO–SiO2 system are caused by the charge states of manganese ions changing in response to rising temperature. The triangulation of the Mn2O3–ZnO–SiO2 system at 800°С is determined by the ZnMn2O4–Zn2SiO4 tie-line and partitions the system to the ZnO–Zn2SiO4–ZnMn2O4, Zn2SiO4–ZnMn2O4–SiO2, and ZnMn2O4–SiO2–Mn2O3 simplex triangles. The Zn2 – 2хMn2хSiO4 solid solution with an extent limited to Zn1.6Mn0.4SiO4 is formed at temperatures above 1000°С. The triangulation of the MnO–ZnO–SiO2 ternary system is determined by the Zn1.6Mn0.4SiO4–ZnO–MnSiO3 simplex triangle.
Similar content being viewe
作者简介
N. Zaitseva
Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences; Ural State Mining University
														Email: natalzay@yandex.ru
				                					                																			                												                								620990, Yekaterinburg, Russia; 620144, Yekaterinburg, Russia						
R. Samigullina
Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: natalzay@yandex.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
I. Ivanova
Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: natalzay@yandex.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
T. Krasnenko
Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: natalzay@yandex.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
参考
- Wei Ch., Yu J., Qiu G. et al. // J. Alloys Compd. 2023. V. 938. P. 168554. https://doi.org/10.1016/j.jallcom.2022.168554
- Chen J., Zuo H., Wang Ch.-Q. et al. // Electrochim. Acta. 2022. V. 426. P. 140780. https://doi.org/10.1016/j.electacta.2022.140780
- Ivanova I.V., Zaitseva N.A., Samigullina R.F. et al. // Solid State Sci. 2023. V. 136. P. 107110. https://doi.org/10.1016/j.solidstatesciences.2023.107110
- Samigullina R.F., Ivanova I.V., Zaitseva N.A. et al. // Opt. Mater. 2022. V. 132. P. 112788. https://doi.org/10.1016/j.optmat.2022.112788
- Krasnenko T.I., Samigullina R.F., Zaitseva N.A. et al. // J. Alloys Compd. 2022. V. 907. P. 164433. https://doi.org/10.1016/j.jallcom.2022.164433
- Krasnenko T.I., Enyashin A.N., Zaitseva N.A. et al. // J. Alloys Compd. 2020. V. 820. P. 153129. https://doi.org/10.1016/j.jallcom.2019.153129
- Симонов М.А., Сандомирский П.А., Егоров-Тисменко Ю.К. и др. // Докл. АН СССР. 1977. Т. 237. № 3. С. 581.
- Петровых К.А., Кортов В.Г., Гапоненко Н.В. и др. // Физика тв. тела. 2016. Т. 58. № 10. С. 2062.
- Abo-Naf S.M., Marzouk M.A. // Nano-Structures & Nano-Objects. 2021. V. 26. P. 100685. https://doi.org/10.1016/j.nanoso.2021.100685
- Park K.W., Lim H.S., Park S.W. et al. // Chem. Phys. Lett. 2015. V. 636. P. 141. https://doi.org/10.1016/j.cplett.2015.07.032
- Huebner J.S., Sato M. // Am. Mineral. 1970. V. 55. P. 934.
- Bunting E.N. // J. Am. Ceram. Soc. 1930. V. 13. P. 5. https://doi.org/10.1111/j.1151-2916.1930.tb16797.x
- Isomaki I., Zhang R., Xia L. et al. // Trans. Nonferrous Metals Soc. China. 2018. V. 28. P. 1869. https://doi.org/10.1016/S1003-6326(18)64832-0
- Samigullina R.F., Krasnenko T.I. // Mater. Res. Bull. 2020. V. 129. P. 110890. https://doi.org/10.1016/j.materresbull.2020.110890
- Driessens F.C.M., Rieck G.D. // J. Inorg. Nucl. Chem. 1966. V. 28. P. 1593. https://doi.org/10.1016/0022-1902(66)80056-8
- Nadherný L., Jankovsky O., Sofer Z. et al. // J. Eur. Ceram. Soc. 2015. V. 35. P. 555. https://doi.org/10.1016/j.jeurceramsoc.2014.09.008
- Glasser F.P. // Am. J. Sci. 1958. V. 256. P. 398. https://doi.org/10.2475/ajs.256.6.398
- Morris A.E., Muan A. // JOM. 1966. V. 18. № 8. P. 957. https://doi.org/10.1007/bf03378486
- Abs-Wurmbach I. // Contrib. Mineral. Petrol. 1980. V. 71. P. 393.
- Cao Q.-S., Lu W.-Zh., Zou Zh.-Y. et al. // J. Alloys Compd. 2016. V. 661. P. 196. https://doi.org/10.1016/j.jallcom.2015.11.198
- Троянчук И.О., Акимов А.И., Каспер Н.В. и др. // Физика тв. тела. 1994. Т. 36. № 11. С. 3263. https://journals.ioffe.ru/articles/16709
- Казенас Е.К., Звиададзе Г.Н., Больших М.А. // Изв. АН СССР. Металлы. 1984. № 2. С. 67.
- Грибченкова Н.А., Смирновa А.С., Сморчковa К.Г. и др. // Журн. неорган. химии. 2021. Т. 66. № 12. С. 1754. https://doi.org/10.31857/S0044457X21120047
- Fenner C.N. // J. Wash. Acad. Sci. 1912. V. 2. № 20. P. 471.
- Гырдасова О.И., Степанов А.Е., Наумов С.В. и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2022. № 14. С. 583. https://doi.org/10.26456/pcascnn/2022.14.583
- Huang J.-H., Rosen E. // Phys. Chem. Miner. 1994. V. 21. P. 228.
- Liebau F., Sprung M., Thilo E. // Z. Anorg. Allg. Chem. 1958. V. 297. P. 213. https://doi.org/10.1002/zaac.19582970310
- Онуфриева Т.А., Красненко Т.И., Зайцева Н.А. и др. // Физика тв. тела. 2019. Т. 61. № 5. С. 908. Onufrieva T.A., Krasnenko T.I., Zaitseva N.A. et al. // J. Phys. Solid State. 2019. V. 61. № 5. P. 806. https://doi.org/10.1134/S1063783419050238
- Слободин Б.В., Красненко Т.И., Добрынин Б.Е. и др. // Журн. неорган. химии. 2001. Т. 46. №11. С.1922.
- Ахмедов Э.Дж., Алиев З.С., Бабанлы Д.М. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 498. https://doi.org/10.31857/S0044457X21040024
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					







