Derivation of a Force Field for Computer Simulations of Multi-Walled Nanotubes Using Genetic Algorithm. I. Tungsten Disulfide
- Autores: Bandura A.V.1, Lukyanov S.I.1, Domnin A.V.1, Kuruch D.D.1, Evarestov R.A.1
- 
							Afiliações: 
							- Quantum Chemistry Department, Saint-Petersburg State University
 
- Edição: Volume 68, Nº 11 (2023)
- Páginas: 1588-1598
- Seção: ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ
- URL: https://cardiosomatics.ru/0044-457X/article/view/666143
- DOI: https://doi.org/10.31857/S0044457X23601086
- EDN: https://elibrary.ru/EPKYAO
- ID: 666143
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A technique for constructing force fields based on the use of genetic algorithms is proposed, which is aimed at parameterization of potentials intended for computer simulation of polyatomic nanosystems. To illustrate the proposed approach, a force field has been developed for modeling layered modifications of WS2, including multi-walled nanotubes, the dimensions of which are beyond the capabilities of ab initio methods. When determining the potential parameters, layered polytypes of bulk crystals, monolayers, bilayers, and nanotubes of small diameters were used as calibration systems. The parameterization found was successfully tested on double-walled nanotubes, the structure of which was determined using density functional calculations. The obtained force field was used for the first time to model the structure and stability of achiral multi-walled nanotubes based on WS2. The interwall distances obtained from the simulation are in good agreement with the results of recent measurements of these parameters for existing nanotubes.
Sobre autores
A. Bandura
Quantum Chemistry Department, Saint-Petersburg State University
														Email: a.bandura@spbu.ru
				                					                																			                												                								199034, St. Petersburg, Russia						
S. Lukyanov
Quantum Chemistry Department, Saint-Petersburg State University
														Email: a.bandura@spbu.ru
				                					                																			                												                								199034, St. Petersburg, Russia						
A. Domnin
Quantum Chemistry Department, Saint-Petersburg State University
														Email: a.bandura@spbu.ru
				                					                																			                												                								199034, St. Petersburg, Russia						
D. Kuruch
Quantum Chemistry Department, Saint-Petersburg State University
														Email: a.bandura@spbu.ru
				                					                																			                												                								199034, St. Petersburg, Russia						
R. Evarestov
Quantum Chemistry Department, Saint-Petersburg State University
							Autor responsável pela correspondência
							Email: a.bandura@spbu.ru
				                					                																			                												                								199034, St. Petersburg, Russia						
Bibliografia
- Musfeldt J.L., Iwasa Y., Tenne R. // Physics Today. 2020. V. 73. № 8. P. 42. https://doi.org/10.1063/PT.3.4547
- Kawai H., Sugahara M., Okada R. et al. // Appl. Phys. Express. 2017. V. 10. № 5. P. 015001. https://doi.org/10.7567/APEX.10.015001
- Kim B., Park N., Kim J. // Nat. Commun. 2022. V. 13. P. 3237. https://doi.org/10.1038/s41467-022-31018-8
- O’Neal K.R., Cherian J.G., Zak A. et al. // Nano Lett. 2016. V. 16. P. 993. https://doi.org/10.1021/acs.nanolett.5b03996
- Sinha S.S., Zak A., Rosentsvieg R. et al. // Small. 2020. V. 16. № 4. P. 1904390. https://doi.org/10.1002/smll.201904390
- Nagapriya K.S., Goldbart O., Kaplan-Ashiri I. et al. // Phys. Rev. Lett. 2008. V. 101. P. 195501. https://doi.org/10.1103/PhysRevLett.101.195501
- Levi R., Bitton O., Leitus G. et al. // Nano Lett. 2013. V. 13. P. 3736. https://doi.org/10.1021/nl401675k
- Sugahara M., Kawai H., Yomogida Y. et al. // Appl. Phys. Express. 2016. V. 9. P. 075001. https://doi.org/10.7567/APEX.9.075001
- Qin F., Shi W., Ideue T. et al. // Nat. Commun. 2017. V. 8. P. 14465. https://doi.org/10.1038/ncomms14465
- Zhang C.Y., Wang S., Yang L.J. et al. // Appl. Phys. Lett. 2012. V. 100. P. 243101. https://doi.org/10.1063/1.4729144
- Zhang Y.J., Onga M., Qin F. et al. // 2D Mater. 2018. V. 5. P. 035002. https://doi.org/10.1088/2053-1583/aab670
- Divon Y., Levi R., Garel J. et al. // Nano Lett. 2017. V. 17. № 1. P. 28. https://doi.org/10.1021/acs.nanolett.6b03012
- Maharaj D., Bhushan B. // Tribol Lett. 2013. V. 49. № 2. P. 323. https://doi.org/10.1007/s11249-012-0071-0
- Reddy C.S., Zak A., Zussman E. // J. Mater. Chem. 2011. V. 21. P. 16086. https://doi. org/https://doi.org/10.1039/C1JM12700D
- Zohar E., Baruch S., Shneider M.H. et al. // J. Adhes. Sci. Technol. 2011. V. 25. P. 1603. https://doi.org/10.1163/ 016942410X524138
- Otorgust G., Dodiuk H., Kenig S., Tenne R. // Eur. Polym. J. 2017. V. 89. P. 281. https://doi.org/10.1016/j.eurpolymj.2017.02.027
- Yadgarov L., Višić B., Abir T. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 20812. https://doi.org/10.1039/c8cp02245c
- Rahman Md.A., Yomogida Y., Nagano M. et al. // Jpn. J. Appl. Phys. 2021. V. 60. P. 100902. https://doi.org/10.35848/1347-4065/ac2013
- Shen G., Yan Y., Hong K. // Mater. Lett. 2022. V. 319. P. 132303. https://doi.org/10.1016/j.matlet.2022.132303
- Sinha S.S., Yadgarov L., Aliev S.B. et al. // J. Phys. Chem. C. 2021. V. 125. P. 6324. https://doi.org/10.1021/acs.jpcc.0c10784
- Yomogida Y., Miyata Y., Yanagi K. // Appl. Phys. Express. 2019. V. 12. P. 085001. https://doi.org/10.7567/1882-0786/ab2acb
- Bar Sadan M., Houben L., Enyashin A.N. et al. // PNAS. 2008. V. 105. № 41. P. 15643. https://doi.org/10.1073_pnas.0805407105
- Deniz H., Qin L.-C. // Chem. Phys. Lett. 2012. V. 552. P. 92. https://doi.org/10.1016/j.cplett.2012.09.041
- Chen Y., Deniz H., Qin L.-C. // Nanoscale. 2017. V. 9. P. 7124. https://doi.org/10.1039/c7nr01688c
- Krause M., Mücklich A., Zak A. et al. // Phys. Status Solidi B. 2011. V. 248. № 11. P. 2716. https://doi.org/10.1002/pssb.201100076
- Seifert G., Terrones H., Terrones M. et al. // Solid State Commun. 2000. V. 114. № 5. P. 245. https://doi.org/10.1016/S0038-1098(00)00047-8
- Ghorbani-Asl M., Zibouche N., Wahiduzzaman M. et al. // Sci. Rep. 2013. V. 3. P. 2961. https://doi.org/10.1038/srep02961
- Бандура А.В., Куруч Д.Д., Лукьянов С.И., Эварес-тов Р.А. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1795. https://doi.org/10.31857/S0044457X2260116X
- Evarestov R.A., Bandura A.V., Porsev V.V., Kovalenko A.V. // J. Comput. Chem. 2017. V. 38. P. 2581. https://doi.org/10.1002/jcc.24916
- Evarestov R.A., Kovalenko A.V., Bandura A.V. et al. // Mater. Res. Express. 2018. V. 5. P. 115028. https://doi.org/10.1088/2053-1591/aadf00
- Bandura A.V., Lukyanov S.I., Kuruch D.D., Evarestov R.A. // Physica E. 2020. V. 124. P. 114183. https://doi.org/10.1016/j.physe.2020.114183
- Piskunov S., Lisovski O., Zhukovskii Y.F. et al. // ACS Omega. 2019. V. 4. P. 1434. https://doi.org/10.1021/acsomega.8b03121
- Talla J.A., Al-Khaza’leh Kh., Omar N. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1025. https://doi.org/10.1134/S0036023622070178
- Lukyanov S.I., Bandura A.V., Evarestov R.A. et al. // Physica E. 2021. V. 133. P. 114779. https://doi.org/10.1016/j.physe.2021.114779
- Dovesi R., Erba A., Orlando R. et al. // WIREs Comput. Mol. Sci. 2018. V. 8. № 4. P. e1360. https://doi.org/10.1002/wcms.1360
- Dovesi R., Saunders V.R., Roetti C. et al. // CRYSTAL17 User’s Manual. University of Turin. Torino, 2018.
- Pacios L.F., Christiansen P.A. // J. Chem. Phys. 1985. V. 82. P. 2664. https://doi.org/10.1063/1.448263
- Ross R.B., Powers J.M., Atashroo T. et al. // J. Chem. Phys. 1990. V. 93. P. 6654. https://doi.org/10.1063/1.458934
- Heyd J., Scuseria G.E., Ernzerhof M. // J. Chem. Phys. 2003. V. 118. P. 8207. https://doi.org/10.1063/1.1564060
- Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. № 12. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
- Grimme S. // J. Comput. Chem. 2006. V. 27. P. 1787. https://doi.org/10.1002/jcc.20495
- Gale J.D., Rohl A.L. // Mol. Simulation. 2003. V. 29. № 5. P. 291. https://doi.org/10.1080/0892702031000104887
- Shi S., Yan L., Yang Y. et al. // J. Comput. Chem. 2003. V. 24. P. 1059. https://doi.org/10.1002/jcc.10171
- Krishnamoorthy A., Mishra A., Kamal D. et al. // SoftwareX. 2021. V. 13. P. 100663. https://doi.org/10.1016/j.softx.2021.100663
- Nomura K., Kalia R.K., Nakano A. et al. // SoftwareX. 2020. V. 11. P. 100389. https://doi.org/10.1016/j.softx.2019.100389
- Platypus // https://github.com/Project-Platypus/Platypus (accessed May 23, 2023)
- Waskom M.L. // J. Open Source Soft. 2021. V. 6. № 60. P. 3021. https://doi.org/10.21105/joss.03021
- Hunter J.D. // Comput. Sci. Eng. 2007. V. 9. № 3. P. 90. https://doi.org/10.1109/MCSE.2007.55
- The pandas development team. Zenodo 2023. pandas-dev/pandas: Pandas (v2.0.1). https://doi.org/10.5281/zenodo.7857418
- Pedregosa F., Varoquaux G., Gramfort A. et al. // J. Machine Learning Res. 2011. V. 12. P. 2825. https://doi.org/10.48550/arXiv.1201.0490
- Schutte W.J., De Boer J.L., Jellinek F. // J. Solid State Chem. 1987. V. 70. № 2. P. 207. https://doi.org/10.1016/0022-4596(87)90057-0
- Bandura A.V., Evarestov R.A. // Sur. Sci. 2015. V. 641. P. 6. https://doi.org/10.1016/j.susc.2015.04.027
- Seifert G., Köhler T., Tenne R. // J. Phys. Chem. B. 2002. V. 106. № 10. P. 2497. https://doi.org/10.1021/jp0131323
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





