Синтез и физико-химические свойства лактатов РЗЭ иттриевой подгруппы Ln(C3H5O3)3 · 2H2O (Ln = Y, Tb–Lu)
- Авторы: Голикова М.В.1, Япрынцев А.Д.1, Цзя Ч.2, Фатюшина Е.В.1, Баранчиков А.Е.1, Иванов В.К.1,2
- 
							Учреждения: 
							- Институт общей и неорганической химии им. Н.С. Курнакова РАН
- Московский государственный университет им. М.В. Ломоносова
 
- Выпуск: Том 68, № 10 (2023)
- Страницы: 1422-1432
- Раздел: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://cardiosomatics.ru/0044-457X/article/view/666181
- DOI: https://doi.org/10.31857/S0044457X23601050
- EDN: https://elibrary.ru/LMPBMN
- ID: 666181
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Впервые получен ряд лактатов РЗЭ иттриевой подгруппы, изоструктурных лактату иттрия и имеющих состав [Ln(C3H5O3)3(H2O)2] (Ln = Tb–Lu). Синтез кристаллических лактатов РЗЭ проводили из растворов нитратов РЗЭ в присутствии L-молочной кислоты и гексаметилентетрамина. Состав и структура полученных соединений подтверждены методами рентгенофазового, термического и химического (CHN) анализа. Методом ИК-спектроскопии определен характер координации лактат-анионов к катионам РЗЭ. Термическое разложение лактатов РЗЭ при 800°С приводит к образованию нанокристаллических (20–40 нм) оксидов РЗЭ (Y, Tb–Lu).
Ключевые слова
Об авторах
М. В. Голикова
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: yapryntsev@igic.ras.ru
				                					                																			                												                								Россия, 119991, Москва, Ленинский пр-т, 31						
А. Д. Япрынцев
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: yapryntsev@igic.ras.ru
				                					                																			                												                								Россия, 119991, Москва, Ленинский пр-т, 31						
Ч. Цзя
Московский государственный университет им. М.В. Ломоносова
														Email: yapryntsev@igic.ras.ru
				                					                																			                												                								Россия, 119991, Москва, Ленинские горы, 1						
Е. В. Фатюшина
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: yapryntsev@igic.ras.ru
				                					                																			                												                								Россия, 119991, Москва, Ленинский пр-т, 31						
А. Е. Баранчиков
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: yapryntsev@igic.ras.ru
				                					                																			                												                								Россия, 119991, Москва, Ленинский пр-т, 31						
В. К. Иванов
Институт общей и неорганической химии им. Н.С. Курнакова РАН; Московский государственный университет им. М.В. Ломоносова
							Автор, ответственный за переписку.
							Email: yapryntsev@igic.ras.ru
				                					                																			                												                								Россия, 119991, Москва, Ленинский пр-т, 31; Россия, 119991, Москва, Ленинские горы, 1						
Список литературы
- Janicki R., Mondry A., Starynowicz P. // Coord. Chem. Rev. 2017. V. 340. P. 98. https://doi.org/10.1016/j.ccr.2016.12.001
- Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539. https://doi.org/10.1134/S1070328422090056
- Shmelev M.A., Voronina Y.K., Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 224. https://doi.org/10.1134/S1070328422040042
- Boskovic C. // Acc. Chem. Res. 2017. V. 50. № 9. P. 2205. https://doi.org/10.1021/acs.accounts.7b00197
- Stock N., Biswas S. // Chem. Rev. 2012. V. 112. № 2. P. 933. https://doi.org/10.1021/cr200304e
- Lu J., Wang R. // Encycl. Inorg. Bioinorg. Chem. John Wiley & Sons, Ltd, Chichester, UK, 2012. https://doi.org/10.1002/9781119951438.eibc2024
- Sun X., Yuan K., Zhang Y. // J. Rare Earths. 2020. V. 38. № 8. P. 801. https://doi.org/10.1016/j.jre.2020.01.012
- Zhang H., Ye K., Huang X. et al. // Inorg. Chem. Front. 2021. V. 8. № 14. P. 3433. https://doi.org/10.1039/D1QI00442E
- Shmychkov N.V., Orlova A.V., Vlasova K.Y. et al. // SSRN Electron. J. 2022. https://doi.org/10.2139/ssrn.4303491
- Rezende Souza E., Silva I.G.N., Teotonio E.E.S. et al. // J. Lumin. 2010. V. 130. № 2. P. 283. https://doi.org/10.1016/j.jlumin.2009.09.004
- Li L., Fang Y., Liu S. et al. // J. Rare Earths. 2023. V. 41. № 1. P. 100. https://doi.org/10.1016/j.jre.2022.02.019
- Yuan S., Feng L., Wang K. et al. // Adv. Mater. 2018. V. 30. № 37. P. 1. https://doi.org/10.1002/adma.201704303
- Zhao S.-N., Wang G., Poelman D. et al. // Materials (Basel). 2018. V. 11. № 4. P. 572. https://doi.org/10.3390/ma11040572
- Wahsner J., Gale E.M., Rodríguez-Rodríguez A. et al. // Chem. Rev. 2019. V. 119. № 2. P. 957. https://doi.org/10.1021/acs.chemrev.8b00363
- Chen W.-J., Gu Y.-H., Zhao G.-W. et al. // Plant Sci. 2000. V. 152. № 2. P. 145. https://doi.org/10.1016/S0168-9452(99)00235-6
- Nalbandian M., Takeda M. // Biology (Basel). 2016. V. 5. № 4. P. 38. https://doi.org/10.3390/biology5040038
- Adeva-Andany M., López-Ojén M., Funcasta-Calderón R. et al. // Mitochondrion. 2014. V. 17. P. 76. https://doi.org/10.1016/j.mito.2014.05.007
- Nash K.L., Johnson G., Brigham D. et al. // Procedia Chem. 2012. V. 7. P. 45. https://doi.org/10.1016/j.proche.2012.10.009
- Nash K.L. // Solvent Extr. Ion Exch. 2015. V. 33. № 1. P. 1. https://doi.org/10.1080/07366299.2014.985912
- Braley J.C., McAlister D.R., Philip Horwitz E. et al. // Solvent Extr. Ion Exch. 2013. V. 31. № 2. P. 107. https://doi.org/10.1080/07366299.2012.735503
- Tian G., Martin L.R., Rao L. // Inorg. Chem. 2010. V. 49. № 22. P. 10598. https://doi.org/10.1021/ic101592h
- Barkleit A., Kretzschmar J., Tsushima S. et al. // Dalton Trans. 2014. V. 43. № 29. P. 11221. https://doi.org/10.1039/C4DT00440J
- Li Y., Yan P., Hou G. et al. // J. Organomet. Chem. 2013. V. 723. P. 176. https://doi.org/10.1016/j.jorganchem.2012.09.015
- Qu Z.-R., Ye Q., Zhao H. et al. // Chem. – A Eur. J. 2008. V. 14. № 11. P. 3452. https://doi.org/10.1002/chem.200701449
- Ye Q., Fu D.-W., Tian H. et al. // Inorg. Chem. 2008. V. 47. № 3. P. 772. https://doi.org/10.1021/ic701828w
- Yapryntsev A.D., Baranchikov A.E., Churakov A.V. et al. // RSC Adv. 2021. V. 11. № 48. P. 30195. https://doi.org/10.1039/D1RA05923H
- Zhang Y., Karatchevtseva I., Kadi F. et al. // Polyhedron. 2015. V. 87. P. 377. https://doi.org/10.1016/j.poly.2014.12.006
- Alsowayigh M.M., Timco G.A., Borilovic I. et al. // Inorg. Chem. 2020. V. 59. № 21. P. 15796. https://doi.org/10.1021/acs.inorgchem.0c02249
- Powell J.E., Farrell J.L. // Some Observations Regarding Rare-Earth Lactates, Ames, IA (United States), 1962. https://doi.org/10.2172/4749791
- Gouveia M.A., de Carvalho R.G. // J. Inorg. Nucl. Chem. 1966. V. 28. № 3. P. 913. https://doi.org/10.1016/0022-1902(66)80432-3
- Choppin G.R., Chopoorian J.A. // J. Inorg. Nucl. Chem. 1961. V. 22. № 1–2. P. 97. https://doi.org/10.1016/0022-1902(61)80234-0
- Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551
- Wenk H.-R. // Z. Krist.: Cryst. Mater. 1981. V. 154. № 1–2. P. 137. https://doi.org/10.1524/zkri.1981.154.1-2.137
- Grenthe I., Fermor J.H., Kjekshus A. et al. // Acta Chem. Scand. 1971. V. 25. P. 3721. https://doi.org/10.3891/acta.chem.scand.25-3721
- Kendin M., Tsymbarenko D. // Cryst. Growth Des. 2020. V. 20. № 5. P. 3316. https://doi.org/10.1021/acs.cgd.0c00110
- Nabar M.A., Barve S.D. // J. Appl. Crystallogr. 1984. V. 17. № 1. P. 39. https://doi.org/10.1107/S0021889884010979
- Jiang Z.-G., Lv Y.-K., Cheng J.-W. et al. // J. Solid State Chem. 2012. V. 185. P. 253. https://doi.org/10.1016/j.jssc.2011.11.012
- Socrates G. // Infrared and Raman characteristic group frequencies. Tables and charts, 2001.
- Maiwald M.M., Müller K., Heim K. et al. // New J. Chem. 2020. V. 44. № 39. P. 17033. https://doi.org/10.1039/D0NJ04291A
- Cassanas G., Morssli M., Fabrègue E. et al. // J. Raman Spectrosc. 1991. V. 22. № 7. P. 409. https://doi.org/10.1002/jrs.1250220709
- Ozga W., Brzyska W. // J. Therm. Anal. 1989. V. 35. P. 5. https://doi.org/10.1007/BF01914259
- Sugita Y., Ouchi A. // Bull. Chem. Soc. Jpn. 1987. V. 60. № 1. P. 171. https://doi.org/10.1246/bcsj.60.171
- Kraka E., Larsson J.A., Cremer D. // Comput. Spectrosc. Wiley. 2010. P. 105. https://doi.org/10.1002/9783527633272.ch4
- Комиссарова Л.Н., Пушкина Г.Я., Щербакова Л.Г. и др. Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты. М.: Наука, 1984.
- Wang X., Molokeev M.S., Zhu Q. et al. // Chem. - A Eur. J. 2017. V. 23. № 63. P. 16034. https://doi.org/10.1002/chem.201703282
- Langford J.I., Wilson A.J.C. // J. Appl. Crystallogr. 1978. V. 11. № 2. P. 102. https://doi.org/10.1107/S0021889878012844
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 








