Characterization of New Pentanuclear Copper(II) and REE(III) Carboxylate Complexes
- Autores: Pushikhina O.S.1, Karpova E.V.1, Tsarev D.A.2, Tafeenko V.A.1, Shatalova T.B.1
- 
							Afiliações: 
							- Moscow State University
- Mitoengineering Research Institute, Moscow State University
 
- Edição: Volume 68, Nº 9 (2023)
- Páginas: 1324-1336
- Seção: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://cardiosomatics.ru/0044-457X/article/view/666293
- DOI: https://doi.org/10.31857/S0044457X23601189
- EDN: https://elibrary.ru/WLVYXQ
- ID: 666293
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
New pentanuclear complexes [Cu3M2(CHF2COO)12(H2O)8]·2H2O, where M = Er (I) and Nd (II), were synthesized by reacting individual copper haloacetates and REE in aqueous solution. The molecular structure of complex I was determined by single crystal X-ray diffraction analysis (CIF file CCDC no. 2159724). The structural features of the complexes and the nature of the carboxylate bridges between the metal centers affect the properties of these complexes; therefore, two similar compounds with the monochloroacetate ligand were prepared for comparison: [Cu3M2(СH2ClCOO)12(H2O)8]·2H2O, where M = Er (III) and Nd (IV). Compounds III and IV are isostructural to previously studied complexes of this type with other REE. Compounds I–IV were characterized by X-ray diffraction analysis and IR spectroscopy, and their thermal behavior was studied. To confirm the formation of precursors of molecular species of crystalline compound I, the solute species of the complexes were determined by electrospray ionization mass spectrometry (ESI-MS).
Palavras-chave
Sobre autores
O. Pushikhina
Moscow State University
														Email: pushikhina_chem@mail.ru
				                					                																			                												                								119991, Moscow, Russia						
E. Karpova
Moscow State University
														Email: karpova@inorg.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
D. Tsarev
Mitoengineering Research Institute, Moscow State University
														Email: karpova@inorg.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
V. Tafeenko
Moscow State University
														Email: karpova@inorg.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
T. Shatalova
Moscow State University
							Autor responsável pela correspondência
							Email: karpova@inorg.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
Bibliografia
- Can Xu, Chen S., Jia L. // Russ. J. Inorg. Chem. 2022. V. 67. P. 22. https://doi.org/10.1134/S0036023622601519
- Ba Q., Qian J., Zhang C. // J. Clust. Sci. 2019. V. 30. P. 747. https://doi.org/10.1007/s10876-019-01534-7
- Zhong L., Liu M., Zhang B. et al. // Chem. Res. Chin. Univ. 2019. V. 35. P. 693. https://doi.org/10.1007/s40242-019-9058-9
- Васильев А., Волкова О., Зверева Е., Маркина М. Низкоразмерный магнетизм. Москва: ФИЗМАТЛИТ, 2018.
- Goodenough J.B. Magnetism and the Chemical Bond. New Jersey: John Wiley & Sons, 1963.
- Chen F., Lu W., Zhu Y., Wu B., Zheng X. // J. Coord. Chem. 2010. V. 63. № 20. P. 3599. https://doi.org/10.1080/00958972.2010.514904
- Viola, Muhammad N., Ikram M. et al. // J. Mol. Struct. 2019. V. 1196. P. 754. https://doi.org/10.1016/j.molstruc.2019.06.095
- Bovkunova A.A., Bazhina E.S., Evstifeev I.S. et al. // Dalton Trans. 2021. V. 50. № 35. P. 12275. https://doi.org/10.1039/d1dt01161h
- Chen X.-M., Tong M.-L., Wu Y.-L., Luo Y.-J. // J. Chem. Soc., Dalton Trans. 1996. V. 10. P. 2181. https://doi.org/10.1039/DT9960002181
- Voronkova V.K., Galeev R.T., Shova S. et al. // Appl. Magn. Reson. 2003. V. 25. P. 227. https://doi.org/10.1007/BF03166687
- Cui Y., Zheng F.K., Yan D.C. et al. // Chin. J. Struct. Chem. 1998. V. 17. P. 5.
- Zhang C.-G., Yan D., Ma Y., Yang F. // J. Coord. Chem. 2000. V. 51. P. 261. https://doi.org/10.1080/00958970008055132
- Wojciechowski W., Legendziewicz J., Puchalska M., Ciunik Z. // J. Alloys Compd. 2004. V. 380. P. 285. https://doi.org/10.1016/j.jallcom.2004.03.056
- Bateman W.G., Conrad D.B. // J. Am. Chem. Soc. 1915. V. 37. P. 2553.
- Judd M.D., Plunkett B.A., Pope M. // J. Therm. Anal. 1976. V. 9. P. 83. https://doi.org/10.1007/BF01909269
- Карпова Е.В., Болталин А.И., Коренев Ю.М., Троянов С.И. // Коорд. химия. 2000. Т. 26. № 5. С. 384.
- Sheldrick G.M. // Acta Cryst. 2008. V. A64. P. 112. https://doi.org/10.1107/S0108767307043930
- Sheldrick G.M. // Acta Cryst. 2015. V. A71. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Cryst. 2015. V. C71. P. 3. https://doi.org/10.1107/S2053229614024218
- Brandenburg K., Berndt M. DIAMOND. Version 2.1e. Crystal Impact GbR. Bonn, 2000.
- Niekerk J.N., Schoening F.R.L. // Acta Cryst. 1953. V. 6. P. 227. https://doi.org/10.1107/S0365110X53000715
- Jangbo S., Rongzhi N., Xin S., Bo P. // Proceedings of SPIE. 2017. V. 10256. P. 1046357. https://doi.org/10.1117/12.2260699
- Кавун В.Я., Кайдалова T.A., Костин В.И. и др. // Коорд. химия. 1984. Т. 10. № 11. С. 1502.
- Анцышкина А.С., Порай-Кошиц M.A., Острикова В.Н. // Журн. неорган. химии. 1988. Т. 33. № 8. С. 1950.
- Sugita Y., Ouchi A. // Bull. Chem. Soc. Jpn. 1987. V. 60. P. 171. https://doi.org/10.1246/bcsj.60.171
- Oczko G., Starynowicz P. // J. Mol. Struct. 2000. V. 523. P. 79. https://doi.org/10.1016/S0022-2860(99)00391-9
- Cristóvão B., Osypiuk D., Miroslaw B., Bartyzel A. // Polyhedron. 2020. V. 188. P. 114703. https://doi.org/10.1016/j.poly.2020.114703
- Costes J.-P., Auchel M., Dahan F. et al. // Inorg. Chem. 2006. V. 45. № 5. P. 1924. https://doi.org/10.1021/ic050587o
- Georgopoulou A.N., Pissas M., Psycharis V. et al. // Molecules. 2020. V. 25. № 10. P. 2280. https://doi.org/10.3390/molecules25102280
- Herbert C.G., Johnstone R.A.W. Mass Spectrometry Basics N.Y: CRC Press, 2003. https://doi.org/10.1002/aoc.509
- Schramel O., Michalke B., Kettrup A. // J. Chromatogr. A. 1998. V. 819. P. 231. https://doi.org/10.1016/S0021-9673(98)00259-3
- Henderson W., McIndoe J.S. Mass Spectrometry of Inorganic, Coordination and Organometallic Compounds. New Jersey: John Wiley & Sons Ltd., 2005. https://doi.org/10.1002/0470014318
- Deacon G.B., Phillips R.J. // Coord. Chem. Rev. 1980. V. 33. P. 227. https://doi.org/10.1016/S0010-8545(00)80455-5
- The Matheson Company Inc. SpectraBase New Jersey: John Wiley & Sons, 1980.
- Pushikhina O.S., Volkova K.R., Karpova E.V. et al. // Mendeleev Commun. 2022. V. 32. № 2. P. 208. https://doi.org/10.1016/j.mencom.2022.03.018
- Judd M.D., Plunkett B.A., Pope M.I. // J. Therm. Anal. 1974. V. 6. P. 555. https://doi.org/10.1007/BF01911560
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 








