Computer simulation of the properties and structure of crystalline 1,6-closo-carborane (С2B4)n
- Autores: Zaitsev S.А.1, Zaitseva Y.I.1, Getmanskiy I.V.1, Minyaev R.М.1
- 
							Afiliações: 
							- Southern Federal University
 
- Edição: Volume 69, Nº 5 (2024)
- Páginas: 751-756
- Seção: ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ
- URL: https://cardiosomatics.ru/0044-457X/article/view/666543
- DOI: https://doi.org/10.31857/S0044457X24050133
- EDN: https://elibrary.ru/YEOZYV
- ID: 666543
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The structure and properties of a three-dimensional crystal consisting of 1,6-closo-carborane have been studied using quantum chemical methods with calculations in the approximation of functional density theory and the imposition of periodic boundary conditions. Calculations of the phonon energy spectrum and electronic band structure showed that the 3D crystal is structurally stable and belongs to an indirect gap semiconductor with a band gap of ~1.44 eV. The calculated parameters of mechanical properties showed that the hardness has the same values (21.8 GPa and 25.2 GPa) according to each method of theoretical evaluation of hardness, Young’s modulus is equal to 97.24 GPa and 242.90 GPa, respectively.
Palavras-chave
Sobre autores
S. Zaitsev
Southern Federal University
							Autor responsável pela correspondência
							Email: stzaycev@sfedu.ru
				                					                																			                								
Research Institute of Physical and Organic Chemistry
Rússia, Rostov-on-DonYu. Zaitseva
Southern Federal University
														Email: stzaycev@sfedu.ru
				                					                																			                								
Research Institute of Physical and Organic Chemistry
Rússia, Rostov-on-DonI. Getmanskiy
Southern Federal University
														Email: stzaycev@sfedu.ru
				                					                																			                								
Research Institute of Physical and Organic Chemistry
Rússia, Rostov-on-DonR. Minyaev
Southern Federal University
														Email: stzaycev@sfedu.ru
				                					                																			                								
Research Institute of Physical and Organic Chemistry
Rússia, Rostov-on-DonBibliografia
- Meyer J., Geim A.K., Katsnelson M.I. et al. // Nature. 2007. V. 446. № 7131. P. 60.https://doi.org/10.1038/nature05545
- Sofo J.O., Chaudhari A.S., Barber G.D. // Phys. Rev. B. 2007. V. 75. № 15. P. 153401. https://doi.org/10.1103/PhysRevB.75.153401
- Zhong M., Xu D., Yu X et al. // Nano Energy. 2016. V. 28. P. 12. https://doi.org/10.1016/j.nanoen.2016.08.031
- Peng B., Zhang H., Shao H. et al. // J. Mater. Chem. C. 2016. V. 4. P. 3592. https://doi.org/10.1039/C6TC00115G
- Jiang J.W., Park H.S. // Nat. Commun. 2014. V. 5. P. 4727. https://doi.org/10.1038/ncomms5727
- Tkachenko N.V., Steglenko D.V., Fedik N.S. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 19764. https://doi.org/10.1039/C9CP03786A
- Zaitsev S.A., Steglenko D.V., Minyaev R.M. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 6. P. 780. https://doi.org/10.1134/S0036023619060172
- Ghiasi R., Tale R., Daneshdoost V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 753. https://doi.org/10.1134/S003602362360003X
- Sarvestani R.M.J., Ahmadi R., Yousefi M. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 761. https://doi.org/10.1134/S0036023623600107
- Neumolotov N.K., Selivanov N.A., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1583. https://doi.org/10.1134/S0036023622600861
- Shmal’ko A.V., Sivaev I.B. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1726. https://doi.org/10.1134/S0036023619140067
- Sheng X-L., Yan Q-B., Ye F. et al. // Phys. Rev. Lett. 2011. V. 106. № 15. P. 155703. https://doi.org/10.1103/PhysRevLett.106.155703
- Zhang J., Wang R., Zhu X. et al. // Nature Commun. 2017. V. 8. № 1. P. 683. https://doi.org/10.1038/s41467-017-00817-9
- Getmanskii I.V., Koval V.V., Minyaev R.M. et al. // J. Phys. Chem. C. 2017. V. 121. № 40. P. 22187. https://doi.org/10.1021/acs.jpcc.7b07565
- Getmanskii I.V., Minyaev R.M., Steglenko D.V. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 34. P. 10118. https://doi.org/10.1002/anie.201701225
- Getmanskii I.V., Minyaev R.M., Koval V.V. // Mendeleev Commun. 2018. V. 28. № 2. P. 173. https://doi.org/10.1016/j.mencom.2018.03.021
- Getmanskii I.V., Koval V.V., Boldyrev A.I. et al. // J. Comput. Chem. 2019. V. 40. № 20. P. 1861. https://doi.org/10.1002/jcc.25837
- Steglenko D.V., Zaitsev S.A., Minyaev R.M. // Russ. J. Inorg. Chem. 2019. V. 64. № 8. P. 1031. https://doi.org/10.1134/S0036023619080163
- Genady A.R. // Eur. J. Med. Chem. 2009. V. 44. P. 409. https://doi.org/10.1016/j.ejmech.2008.02.037
- Sharapov V.M., Mirnov S.V., Grashin S.A. et al. // J. Nucl. Mater. 1995. V. 220. P. 730. https://doi.org/10.1016/0022-3115(94)00575-3
- Мещеряков А.И., Акулина Д.К., Батанов Г.М. и др. // Физика плазмы. 2005. Т. 31. С. 496.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16, Revision A.03. Gaussian Inc.: Wallingford CT, 2016.
- Kresse G., Hafner J. // Phys. Rev. B. 1993. V. 47. № 1. P. 558. https://doi.org/10.1103/PhysRevB.47.558
- Kresse G., Hafner J. // Phys. Rev. B. 1994. V. 49. № 20. P. 14251. https://doi.org/10.1103/PhysRevB.49.14251
- Kresse G., Furthmuller J. // Comput. Mater. Sci. 1996. V. 6. № 1. P. 15. https://doi.org/10.1016/0927-0256(96)00008-0
- Kresse G., Furthmuller J. // Phys. Rev. B. 1996. V. 54. № 16. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
- Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
- Perdew J.P., Ruzsinszky A., Csonka G.I. // Phys. Rev. Lett. 2008. V. 100. № 13. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406
- Blöchl P.E. // Phys. Rev. B: Condens. Matter Mater. Phys. 1994. V. 50. № 24. P. 17953. https://doi.org/10.1103/PhysRevB.50.17953
- Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
- Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. № 12. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
- Togo A., Chaput L., Tadano T. et al. // Phys. Rev. B. 2015. V. 91. № 9. P. 094306. https://doi.org/10.1103/PhysRevB.91.094306
- Togo A. // J. Phys. Soc. Jpn. 2023. V. 92. P. 012001. https://doi.org/10.7566/JPSJ.92.012001
- Šimůnek A., Vackář J. // J. Phys. Rev. Lett. 2006. V. 96. P. 085501. https://doi.org/10.1103/PhysRevLett.96.085501
- Liu Z.Y., Guo X., He J. et al. // Phys. Rev. Lett. 2007. V. 98. P. 109601. https://doi.org/10.1103/PhysRevLett.98.109601
- Šimůnek A., Vackář J.A. // Phys. Rev. Lett. 2007. V. 98. P. 109602. https://doi.org/10.1103/PhysRevLett.98.109602
- Šimůnek A., Vackář J. // Phys. Rev. B. 2007. V. 75. P. 172108. https://doi.org/10.1103/PhysRevB.75.172108
- Li K.Y., Wang X.T., Zhang F.F. et al. // Phys. Rev. Lett. 2018. V. 100. P. 235504. https://doi.org/10.1103/PhysRevLett.100.235504
- Li K.Y., Xue D.F. // Chin. Sci. Bull. 2009. V. 54. P. 131. https://doi.org/10.1007/s11434-008-0550-8
- Chemcraft — graphical software for visualization of quantum chemistry computations. Version 1.8, build 654. https://www.chemcraftprog.com
- Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970
- McKee M.L. // J. Am. Chem. Soc. 1992. V. 114. № 3. P. 879. https://doi.org/10.1021/ja00029a012
- Minyaev R.M., Minkin V.I., Gribanova T.N. et al. // Mendeleev Commun. 2001. V. 11. № 4. P. 132. https://doi.org/10.1070/MC2001v011n04ABEH001475
- Mastryukov V.S., Dorofeeva O.V., Vilkov L.V. et al. // J. Chem. Soc. 1973. № 8. P. 276. https://doi.org/10.1039/C39730000276
- Hill R. // Proc. Phys. Soc. 1952. V. 65. № 5. P. 349. https://doi.org/10.1088/0370-1298/65/5/307
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
