Heteroleptic Anionic Cobalt(II) Pivalate Complex with a Bridging Trimethylsiloxy Ligand: Synthesis, Structure, and Formation Mechanism
- Авторлар: Petrov P.A.1, Nikolaevskii S.A.2, Yambulatov D.S.2, Starikova A.A.3, Sukhikh T.S.1, Kiskin M.A.2, Sokolov M.N.1, Eremenko I.L.2
- 
							Мекемелер: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Research Institute of Physical and Organic Chemistry, Southern Federal University
 
- Шығарылым: Том 68, № 9 (2023)
- Беттер: 1255-1264
- Бөлім: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://cardiosomatics.ru/0044-457X/article/view/666245
- DOI: https://doi.org/10.31857/S0044457X23600998
- EDN: https://elibrary.ru/YFRWMW
- ID: 666245
Дәйексөз келтіру
Аннотация
The heteroleptic anionic complex (IPrPhH)[Co2(μ-Piv)2(μ-OSiMe3)(Piv)2] (I) was synthesized through the reaction of cobalt pivalate [Co(Piv)2]n with 1,3-bis(2,6-diisopropylphenyl)-2-phenylimidazolium iodide ([IPrPhH]I) and KN(SiMe3)2 and studied by X-ray diffraction both in the solvate-free form and in the form of solvate with pentane (I⋅0.75C5H12) (CCDC 2257678–2257679). Modeling of the probable mechanism of formation of complex I and evaluation of exchange coupling between paramagnetic centers in it were carried out by density functional theory method.
Негізгі сөздер
Авторлар туралы
P. Petrov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: panah@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
S. Nikolaevskii
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sanikol@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
D. Yambulatov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sanikol@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
A. Starikova
Research Institute of Physical and Organic Chemistry, Southern Federal University
														Email: sanikol@igic.ras.ru
				                					                																			                												                								344090, Rostov-on-Don, Russia						
T. Sukhikh
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: sanikol@igic.ras.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
M. Kiskin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sanikol@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
M. Sokolov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: sanikol@igic.ras.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
I. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Хат алмасуға жауапты Автор.
							Email: sanikol@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
Әдебиет тізімі
- Diez-Gonzalez S. (Ed.) // N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools. Croydon: The Royal Society of Chemistry, 2016.
- Zhang Y., Wu L., Wang H. // Coord. Chem. Rev. 2023. V. 477. P. 214942. https://doi.org/10.1016/j.ccr.2022.214942
- Takahashi S., Frutos M., Baceiredo A. et al. // Angew. Chem. Int. Ed. 2022. V. 61. № 37. P. e202208202. https://doi.org/10.1002/anie.202208202
- Nougué R., Takahashi S., Baceiredo A. et al. // Angew. Chem. Int. Ed. 2023. V. 62. № 4. P. e202215394. https://doi.org/10.1002/anie.202215394
- Yadav R., Sun X., Köppe R. et al. // Angew. Chem. Int. Ed. 2022. V. 61. № 47. P. e202211115. https://doi.org/10.1002/anie.202211115
- Арсеньева К.В., Климашевская А.В., Жеребцов М.А. и др. // Коорд. Химия. 2022. Т. 48. № 8. С. 458. Arsenyeva K.V., Klimashevskaya A.V., Zherebtsov M.A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 8. P. 464. https://doi.org/10.1134/S1070328422070016
- Пискунов А.В., Арсеньева К.В., Климашевская А.В. и др. // Коорд. Химия. 2022. Т. 48. № 5. С. 277. Piskunov A.V., Arsenyeva K.V., Klimashevskaya A.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 5. P. 278. https://doi.org/10.1134/S1070328422050074
- Arsenyeva K.V., Chegerev M.G., Cherkasov A.V. et al. // Mendeleev Commun. 2021. V. 31. № 3. P. 330. https://doi.org/10.1016/j.mencom.2021.04.016
- Tsys K.V., Chegerev M.G., Fukin G.K. et al. // Mendeleev Commun. 2020. V. 30. № 2. P. 205. https://doi.org/https://doi.org/10.1016/j.mencom.2020.03.025
- Krätschmer F., Sun X., Gillhuber S. et al. // Chem. Eur. J. 2023. P. e202203583. https://doi.org/10.1002/chem.202203583
- Пискунов А.В., Цыс К.В., Чегерев М.Г. и др. // Коорд. химия. 2019. Т. 45. № 9. С. 527. Piskunov A.V., Tsys K.V., Chegerev M.G. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 9. P. 626. https://doi.org/10.1134/S1070328419090069
- Arsenyeva K.V., Ershova I.V., Chegerev M.G. et al. // J. Organomet. Chem. 2020. V. 927. P. 121524. https://doi.org/10.1016/j.jorganchem.2020.121524
- Tsys K.V., Chegerev M.G., Pashanova K.I. et al. // Inorg. Chim. Acta. 2019. V. 490. P. 220. https://doi.org/10.1016/j.ica.2019.03.024
- Chegerev M.G., Piskunov A.V., Tsys K.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 6. P. 875. https://doi.org/10.1002/ejic.201801383
- Timofeeva V., Baeza J.M.L., Nougué R. et al. // Chem. Eur. J. 2022. V. 28. № 44. P. e202201615. https://doi.org/10.1002/chem.202201615
- Tsys K.V., Chegerev M.G., Fukin G.K. et al. // Mendeleev Commun. 2018. V. 28. № 5. P. 527. https://doi.org/10.1016/j.mencom.2018.09.026
- Dodonov V.A., Chen W., Zhao Y. et al. // Chem. Eur. J. 2019. V. 25. № 35. P. 8259. https://doi.org/10.1002/chem.201900517
- Dodonov V.A., Kushnerova O.A., Baranov E.V. et al. // Dalton Trans. 2021. V. 50. № 25. P. 8899. https://doi.org/10.1039/D1DT01199E
- Pankov R.O., Prima D.O., Kostyukovich A.Y. et al. // Dalton Trans. 2023. V. 52. № 13. P. 4122. https://doi.org/10.1039/D2DT03665G
- Astakhov A.V., Chernenko A.Y., Kutyrev V.V. et al. // Inorg. Chem. Front. 2023. V. 10. № 1. P. 218. https://doi.org/10.1039/D2QI01832B
- Dodonov V.A., Xiao L., Kushnerova O.A. et al. // Chem. Commun. 2020. V. 56. № 54. P. 7475. https://doi.org/10.1039/D0CC03270K
- Zhang Y., Dodonov V.A., Chen W. et al. // Inorg. Chem. 2023. V. 62. № 16. P. 6288. https://doi.org/10.1021/acs.inorgchem.2c04297
- Dodonov V.A., Skatova A.A., Fedushkin I.L. // Mendeleev Commun. 2022. V. 32. № 5. P. 582. https://doi.org/10.1016/j.mencom.2022.09.004
- Dodonov V.A., Sokolov V.G., Baranov E.V. et al. // Inorg. Chem. 2022. V. 61. № 38. P. 14962. https://doi.org/10.1021/acs.inorgchem.2c01296
- Krahfuss M.J., Radius U. // Dalton Trans. 2021. V. 50. № 20. P. 6752. https://doi.org/10.1039/D1DT00617G
- Arsenyeva K.V., Pashanova K.I., Trofimova O.Y. et al. // New J. Chem. 2021. V. 45. № 26. P. 11758. https://doi.org/10.1039/D1NJ01644J
- Arsenyeva K.V., Klimashevskaya A.V., Pashanova K.I. et al. // Appl. Organomet. Chem. 2022. V. 36. № 4. P. e6593. https://doi.org/10.1002/aoc.6593
- Shangin P.G., Akyeva A.Y., Vakhrusheva D.M. et al. // Organometallics. 2023. https://doi.org/10.1021/acs.organomet.2c0060
- Rzhevskiy S.A., Philippova A.N., Chesnokov G.A. et al. // Chem. Commun. 2021. V. 57. № 46. P. 5686. https://doi.org/10.1039/D1CC01837J
- Bantreil X., Nolan S.P. // Nat. Protoc. 2011. V. 6. № 1. P. 69. https://doi.org/10.1038/nprot.2010.177
- Cazin C.S.J. (Ed.) // N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis. Dordrecht: Springer, 2011. 220 p.
- Jayaraj A., Raveedran A.V., Latha A.T. et al. // Coord. Chem. Rev. 2023. V. 478. P. 214922. https://doi.org/10.1016/j.ccr.2022.21492
- Nair P.P., Jayaraj A., Swamy C.A. // ChemistrySelect. 2022. V. 7. № 4. P. e202103517. https://doi.org/10.1002/slct.20210351
- Simler T., Danopoulos A.A., Braunstein P. // Compr. Organomet. Chem. IV. Oxford: Elsevier, 2022. P. 632. https://doi.org/10.1016/B978-0-12-820206-7.00109-8
- Bera S.S., Szostak M. // ACS Catal. 2022. V. 12. № 5. P. 3111. https://doi.org/10.1021/acscatal.1c05869
- Epping R.F.J., Vesseur D., Zhou M. et al. // ACS Catal. 2023. P. 5428. https://doi.org/10.1021/acscatal.3c00591
- Mercs L., Albrecht M. // Chem. Soc. Rev. 2010. V. 39. № 6. P. 1903. https://doi.org/10.1039/B902238B
- Oehninger L., Rubbiani R., Ott I. // Dalton Trans. 2013. V. 42. № 10. P. 3269. https://doi.org/10.1039/C2DT32617
- Liu W., Gust R. // Coord. Chem. Rev. 2016. V. 329. P. 191. https://doi.org/10.1016/j.ccr.2016.09.004
- Mora M., Gimeno M.C., Visbal R. // Chem. Soc. Rev. 2019. V. 48. № 2. P. 447. https://doi.org/10.1039/C8CS00570
- Wang D., Leng X., Ye S. et al. // J. Am. Chem. Soc. 2019. V. 141. № 19. P. 7731. https://doi.org/10.1021/jacs.9b03726
- Sinha N., Pfund B., Wegeberg C. et al. // J. Am. Chem. Soc. 2022. V. 144. № 22. P. 9859. https://doi.org/10.1021/jacs.2c02592
- Smith J.M., Long J.R. // Inorg. Chem. 2010. V. 49. № 23. P. 11223. https://doi.org/10.1021/ic1018407
- Zolnhofer E.M., Käß M., Khusniyarov M.M. et al. // J. Am. Chem. Soc. 2014. V. 136. № 42. P. 15072. https://doi.org/10.1021/ja508144j
- Nikolaevskii S.A., Petrov P.A., Sukhikh T.S. et al. // Inorg. Chim. Acta. 2020. V. 508. P. 119643. https://doi.org/10.1016/j.ica.2020.119643
- Bellan E.V., Poddel’sky A.I., Protasenko N.A. et al. // ChemistrySelect. 2016. V. 1. № 11. P. 2988. https://doi.org/10.1002/slct.201600506
- Massard A., Braunstein P., Danopoulos A.A. et al. // Organometallics. 2015. V. 34. № 11. P. 2429. https://doi.org/10.1021/om501178p
- Yambulatov D.S., Petrov P.A., Nelyubina Y.V. et al. // Mendeleev Commun. 2020. V. 30. № 3. P. 293. https://doi.org/10.1016/j.mencom.2020.05.010
- Yambulatov D.S., Nikolaevskii S.A., Shmelev M.A. et al. // Mendeleev Commun. 2021. V. 31. № 5. P. 624. https://doi.org/10.1016/j.mencom.2021.09.011
- Danopoulos A.A., Braunstein P., Monakhov K.Y. et al. // Dalton Trans. 2017. V. 46. № 4. P. 1163. https://doi.org/10.1039/C6DT03565E
- Meng Y.-S., Jiang S.-D., Wang B.-W. et al. // Acc. Chem. Res. 2016. V. 49. № 11. P. 2381. https://doi.org/10.1021/acs.accounts.6b00222
- Meng Y.-S., Mo Z., Wang B.-W. et al. // Chem. Sci. 2015. V. 6. № 12. P. 7156. https://doi.org/10.1039/C5SC02611C
- Yao X.-N., Du J.-Z., Zhang Y.-Q. et al. // J. Am. Chem. Soc. 2017. V. 139. № 1. P. 373. https://doi.org/10.1021/jacs.6b11043
- Ghadwal R.S., Reichmann S.O., Herbst-Irmer R. // Chem. Eur. J. 2015. V. 21. № 11. P. 4247. https://doi.org/10.1002/chem.20140592
- Gordon A.J., Ford R.A. // The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References. N.Y.: Wiley, 1972.
- Petrov P.A., Smolentsev A.I., Bogomyakov A.S. et al. // Polyhedron. 2017. V. 129. P. 60. https://doi.org/10.1016/j.poly.2017.03.033
- Apex3 Software Suite: Apex3, SADABS-2016/2 and SAINT. Version 2018.7-2. Madison, WI: Bruker AXS Inc., 2017.
- Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Wallingford CT 2016. P. Gaussian 16.
- Becke A.D. // J. Chem. Phys. 1993. V. 98. № 2. P. 1372. https://doi.org/10.1063/1.464304
- Noodleman L. // J. Chem. Phys. 1981. V. 74. № 10. P. 5737. https://doi.org/10.1063/1.440939
- Shoji M., Koizumi K., Kitagawa Y. et al. // Chem. Phys. Lett. 2006. V. 432. № 1. P. 343. https://doi.org/10.1016/j.cplett.2006.10.023
- Minyaev R.M. // Russ. Chem. Rev. 1994. V. 63. № 11. P. 883. https://doi.org/10.1070/RC1994v063n11ABEH000124 Миняев Р.М. // Успехи химии. 1994. Т. 63. № 11. С. 939.
- Chemcraft, version 1.8 2014. http://www.chemcraftprog.com
- Петров П.А., Николаевский С.А., Ямбулатов Д.С. и др. // Коорд. химия. 2023. Т. 49. № 7. С. 398.https://doi.org/10.31857/S0132344X22600527
- Olmstead M.M., Sigel G., Hope H. et al. // J. Am. Chem. Soc. 1985. V. 107. № 26. P. 8087. https://doi.org/10.1021/ja00312a049
- Kownacki I., Kubicki M., Marciniec B. // Polyhedron. 2001. V. 20. № 24. P. 3015. https://doi.org/10.1016/S0277-5387(01)00914-7
- Yoshimitsu S., Hikichi S., Akita M. // Organometallics. 2002. V. 21. № 18. P. 3762. https://doi.org/10.1021/om020268u
- Asadi A., Eaborn C., Hill M.S. et al. // J. Organomet. Chem. 2005. V. 690. № 4. P. 944. https://doi.org/10.1016/j.jorganchem.2004.10.043
- Ehle S., Brüser V., Lorenz V. et al. // Eur. J. Inorg. Chem. 2013. V. 2013. № 9. P. 1451. https://doi.org/10.1002/ejic.201201060
- Matveeva R., Blasius C.K., Wadepohl H. et al. // Dalton Trans. 2021. V. 50. № 20. P. 6802. https://doi.org/10.1039/D1DT00277E
- Behrens H. // Adv. Organomet. Chem. 1980. V. 18. P. 1. https://doi.org/10.1016/S0065-3055(08)60305-6
- Selikhov A.N., Lapshin I.V., Cherkasov A.V. et al. // Organometallics. 2021. V. 40. № 17. P. 3042. https://doi.org/10.1021/acs.organomet.1c00406
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Рұқсат ақылы немесе тек жазылушылар үшін
		                                							Рұқсат ақылы немесе тек жазылушылар үшін
		                                					






