Features of complex formation of native and polymeric β-cyclodextrins with sulfasalazine

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The work is devoted to the study of the complex formation of sulfasalazine with native and polymeric β-cyclodextrins in buffer solutions with a physiological pH value using isothermal saturation and 1H NMR methods. It was established that sulfasalazine forms two types of complexes when interacting with the cyclodextrins under consideration, but only the process of formation of inclusion complexes determines the observed increase in drug solubility, which is more pronounced in the presence of polymeric β-cyclodextrin. It was determined that complexation with β-cyclodextrin and its polymeric derivative leads to a decrease in the permeability coefficients of sulfasalazine through the model membrane, which is determined by both the stability constant of the complexes and their ability to pass through the membrane.

作者简介

M. Agafonov

G.A. Krestov Institute of Chemistry of Solutions of the Russian Academy of Sciences

I. Terekhova

G.A. Krestov Institute of Chemistry of Solutions of the Russian Academy of Sciences

Email: ivt@isc-ras.ru

参考

  1. Plosker G.L., Croom K.F. // Drugs. 2005. Vol. 65. N 13. P. 1825. doi: 10.2165/00003495-200565130-00008
  2. Gassull M.A., Cabre E. In: Crohn's Disease and Ulcerative Colitis / Ed. D.C. Baumgart. Berlin: Springer International Publishing AG, 2017. P. 311.
  3. Shadid M., Gurau G., Shamshina J.L., Chuang B.-C., Hailu S., Guan E., Chowdhury S.K., Wu J.-T., Rizvi S.A.A., Griffin R.J., Rogers R.D. // Med. Chem. Commun. 2015. Vol. 6. P. 1837. doi: 10.1039/C5MD00290G
  4. Куранов Д.Ю., Чибунова Е.С., Волкова Т.В., Терехова И.В. // Рос. хим. ж. 2016. Т. 60. № 1. С. 55
  5. Kuranov D.Yu., Chibunova E.S., Volkova T.V., Terekhova I.V. // Russ. J. Gen. Chem. 2018. Vol. 88. N 6. P. 1325. doi: 10.1134/S1070363218060439
  6. Shadid M., Gurau G., Shamshina J.L., Chuang B-C., Hailu S., Guan E., Chowdhury S., Wu J-T., Rizvi S.A.A., Griffin R. J., Rogers R. D. // Med. Chem. Commun. 2015. Vol. 6. P. 1837. doi: 10.1039/x0xx00000x
  7. Wu W-Y, Su C-S // J. Cryst. Growth. 2017. Vol. 460. P. 59. doi: 10.1016/j.jcrysgro.2016.12.017
  8. Chen X., Li D., Zhang H., Duan Y., Huang Y. // Mol. Pharm. 2022. Vol. 19. N 11. P. 4370. doi: 10.1021/acs.molpharmaceut.2c00785
  9. Orooji Y., Mortazavi-Derazkola S., Ghoreishi S.M., Amiri M., Salavati-Niasari M. // J. Hazard. Mater. 2020. Vol. 400. Article no. 123140. doi: 10.1016/j.jhazmat.2020.123140
  10. Jicsinszky L., Martina K. Cravotto G. // J. Drug Deliv. Sci. Technol. 2021. Vol. 64. Article no. 102589. doi: 10.1016/j.jddst.2021.102589
  11. Braga S.S. // J. Drug Deliv. Sci. Technol. 2022. Vol. 75. Article no. 103650. doi: 10.1016/j.jddst.2022.103650
  12. Asija R., Asija S., Lamba H.S., Bhandari A., Kataria S. // Res. J. Pharm. Technol. 2012. Vol. 5. N. 1. P. 53.
  13. Zhou Y.-Q., Huang J., Han P.-F., Lv X.-P. // Asian J. Chem. 2012. Vol. 24. N 5. P. 1991.
  14. Osman S.K., Soliman G.M., Amin M., Zaky A. // Int. J. Pharm. Pharm. Sci. 2014. Vol. 6. N 7. P. 59.
  15. Crini G. // Environ. Chem. Lett. 2021. Vol. 19. P. 2383. doi: 10.1007/s10311-021-01204-z
  16. Simões S.M.N., Rey-Rico A., Concheiro A., Alvarez-Lorenzo C. // Chem. Commun. 2015. Vol. 51. P. 6275. doi: 10.1039/C4CC10388B
  17. Folch-Cano C., Yazdani-Pedram M., Olea-Azar C. // Molecules. 2014. Vol. 19. N 9. P. 14066. doi: 10.3390/molecules190914066
  18. Shekhawat P.B., Pokharkar V.B. // Acta Pharm. Sin. (B). 2017. Vol. 7. N 3. P. 260. doi: 10.1016/j.apsb.2016.09.005
  19. Yang J., Li K., He D., Gu J., Xu J., Xie J., Zhang M., Liu Y., Tan Q. Zhang J. // Drug Metab. Rev. 2020. Vol. 52. P. 19. doi: 10.1080/03602532.2020.1714646
  20. Loftsson T., Vogensen S.B., Brewster M.E., Konráðsdóttir F. // J. Pharm. Sci. 2007. Vol. 96. N. 10. P. 2532. doi: 10.1002/jps.20992
  21. Loftsson T., Jarho P., Másson M. Järvinen T. // Expert Opin Drug Deliv. 2005. Vol. 2. N 2. P. 335-351. doi: 10.1517/17425247.2.1.335
  22. Dahan A., Beig A., Lindley D., Miller J.M. // Adv. Drug Deliv. Rev. 2016. Vol. 101. P. 99. doi: 10.1016/j.addr.2016.04.018
  23. Păduraru D.N., Niculescu A.-G., Bolocan A., Andronic O., Grumezescu A.M., Birla R. // Pharmaceutics. 2022. Vol. 14. N 8. P. 1748. doi: 10.3390/pharmaceutics14081748
  24. R. Periasamy // J. Carbohydr. Chem. 2021. Vol. 40. P. 135. doi: 10.1080/07328303.2021.1967970
  25. Higuchi T., Connons K.A. // Adv. Anal. Chem. Instrum. 1965. Vol. 4. P. 117.
  26. Jesus M.B, Fraceto L.F., Martini M.F., Pickholz M., Ferreira C.V., Paula E. // J. Pharm. Pharmacol. 2012. Vol. 64. N 6. P. 832. doi: 10.1111/j.2042-7158.2012.01492.x
  27. Terekhova I.V., Kumeev R.S., Alper G.A. // J. Incl. Phenom. Macrocycl. Chem. 2007. Vol. 59. P. 301. doi: 10.1007/s10847-007-9327-y
  28. Brandl M., Flaten G.E., Bauer-Brandl A. In: Wiley Encyclopedia of Chemical Biology / Ed. T.P. Begley. Hoboken: John Wiley & Sons, Inc., 2008. Р. 3204.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023