Structure and stability of group 13/15 hydrides stabilized by Lewis acids and Lewis bases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Structural and thermodynamic characteristics of donor-acceptor complexes LA·E′H2EH2·LB(E = B, Al, Ga; E′ = P, As, Sb; LB = SMe2, NMe3);LA- Lewis acids of group 13 elements ER3 (E = B, Al, Ga; R = H, Me, F, Cl, Br, I, C6F5) and transition metal carbonyls Fe(CO)4, M(CO)5, (M = Cr, Mo, W), CpMn(CO)2 were computed by quantum chemical B3LYP-D3/def2-TZVP method. It is shown that removal of the Lewis base is less endothermic than removal of Lewis acid. Stability trends of the complexes depending on group 13/15 elements and Lewis acids were established. Tungsten pentacarbonyl has the highest stabilization effect.

About the authors

A. V Pomogaeva

St. Petersburg State University

A. S Lisovenko

St. Petersburg State University

A. Y Timoshkin

St. Petersburg State University

Email: a.y.timoshkin@spbu.ru

References

  1. Staubitz A., Robertson A.P.M., Sloan M.E., Manners I. // Chem. Rev. 2010. Vol. 110. P. 4023. doi: 10.1021/cr100105a
  2. Vogel U., Timoshkin A.Y., Scheer M. // Angew. Chem. Int. Ed. 2001. Vol. 40. P. 4409. doi: 10.1002/1521-3773(20011203)40:23<4409::AID-ANIE4409>3.0.CO;2-F
  3. Schwan K.-C., Timoshkin A.Y., Zabel M., Scheer M. // Chem.-Eur. J. 2006, Vol. 12. P. 4900. doi: 10.1002/chem.200600185
  4. Marquardt C., Adolf A., Stauber A., Bodensteiner M., Virovets A.V., Timoshkin A.Y., Scheer M. // Chem.-Eur. J. 2013. Vol. 19. P. 11887. doi: 10.1002/chem.201302110
  5. Butlak A.V., Kazakov I.V., Stauber A., Hegen O., Scheer M., Pomogaeva A.V., Timoshkin A.Y. // Eur. J. Inorg. Chem. 2019. Vol. 35. P. 3885. doi: 10.1002/ejic.201900817
  6. Marquardt C., Hegen O., Hautmann M., Balazs G., Bodensteiner M., Virovets A.V., Timoshkin A.Y., Scheer M. // Angew. Chem. Int. Ed. 2015. Vol. 54. P. 13122. doi: 10.1002/anie.201505773
  7. Pomogaeva A.V., Lisovenko A.S., Zavgorodnii A.S., Timoshkin A.Y. // J. Comput. Chem. 2023. Vol. 44. N 3. P. 218. doi: 10.1002/jcc.26867
  8. Vogel U., Hoemensch P., Schwan K.-C., Timoshkin A.Y., Scheer M. // Chem.-Eur. J. 2003. Vol. 9. P. 515. doi: 10.1002/chem.200390054
  9. Vogel U., Timoshkin A.Y., Schwan K.-C., Bodensteiner M., Scheer M. // J. Organomet. Chem. 2006. Vol. 691. P. 4556. doi: 10.1016/j.jorganchem.2006.04.014
  10. Schwan K.-C., Adolf A., Thoms C., Zabel M., Timoshkin A.Y., Scheer M. // Dalton Trans. 2008. P. 5054. doi: 10.1039/B809773A
  11. Marquardt C., Kahoun T., Baumann J., Timoshkin A.Y., Scheer M. // Z. anorg. allg. Chem. 2017. Vol. 643. P. 1326. doi: 10.1002/zaac.201700219
  12. Hegen O., Marquardt C., Timoshkin A.Y., Scheer M. // Angew. Chem. Int. Ed. 2017. Vol. 56. P. 12783. doi: 10.1002/anie.201707436
  13. Rowland R.S., Taylor R. // J. Phys. Chem. 1996. Vol. 100. P. 7384. doi: 10.1021/jp953141+
  14. Ketkov S., Rychagova E., Kather R., Beckmann J. // J. Organomet. Chem. 2021. Vol. 949. P. 121944. doi: 10.1016/j.jorganchem.2021.121944
  15. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L.,Williams-Young D.,Ding F.,Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. // Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT. 2016.
  16. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 1372. doi: 10.1063/1.464304
  17. Lee C., Yang W., Parr R.G. // Phys. Rev. (B). 1988. Vol. 37. P. 785. doi: 10.1103/PhysRevB.37.785
  18. Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. Vol. 132. P. 154104. doi: 10.1063/1.3382344
  19. Weigend F., Ahlrichs R. // Phys Chem. Chem. Phys. 2005. Vol. 7. P. 3297. doi: 10.1039/B508541A.
  20. Cramer C.J. Essentials of Computational Chemistry: Theories and Models. Chichester: John Wiley and Sons, 2004, Р. 357.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences