Synthesis, spectral-luminescent and ionochromic properties of rhodamine B containing terminal (4-hydroxybenzyl)triphenylphosphonium chloride substituent
- Autores: Popov L.D1, Shepelenko E.N2, Podshibyakin V.A3, Valova T.M4, Venidiktova O.V4, Ayt A.O4, Dubonosov A.D2
-
Afiliações:
- Southern Federal University
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences
- Institute of Physical and Organic Chemistry, Southern Federal University
- Federal Scientific Research Center “Crystallography and Photonics”of the Russian Academy of Sciences
- Edição: Volume 93, Nº 3 (2023)
- Páginas: 417-424
- Seção: Articles
- URL: https://cardiosomatics.ru/0044-460X/article/view/667083
- DOI: https://doi.org/10.31857/S0044460X23030095
- EDN: https://elibrary.ru/OSQXWJ
- ID: 667083
Citar
Resumo
Sobre autores
L. Popov
Southern Federal University
E. Shepelenko
Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences
V. Podshibyakin
Institute of Physical and Organic Chemistry, Southern Federal University
T. Valova
Federal Scientific Research Center “Crystallography and Photonics”of the Russian Academy of Sciences
O. Venidiktova
Federal Scientific Research Center “Crystallography and Photonics”of the Russian Academy of Sciences
A. Ayt
Federal Scientific Research Center “Crystallography and Photonics”of the Russian Academy of Sciences
A. Dubonosov
Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences
Email: aled@ipoc.sfedu.ru
Bibliografia
- Chemosensors: Principles, Strategies, and Applications / Eds E.V. Anslyn, B. Wang. Hoboken: Wiley, 2011.
- Sensors in Water Pollutants Monitoring: Role of Material / Eds. D. Pooja, P. Kumar, P. Singh, S. Patil. Singapore: Springer, 2020.
- Dongare P.R., Gore A.H. // ChemistrySelect. 2021. Vol. 6. P. 5657. doi: 10.1002/slct.202101090
- You L., Zha D., Anslyn E.V. // Chem. Rev. 2015. Vol. 115. P. 7840. doi: 10.1021/cr5005524
- Chhatwal M., Kumar A., Singh V., Gupta R.D., Awasthi S.K. // Coord. Chem. Rev. 2015. Vol. 292. P. 30. doi: 10.1016/j.ccr.2015.02.009
- Advances in Spectroscopy: Molecules to Materials / Eds D.K. Singh, S. Das, A. Materny. Singapore: Springer, 2019.
- Lakowicz J.R. Principles of Fluorescence Spectroscopy. Singapore: Springer, 2006.
- Saleem M., Lee K.H. // RSC Adv. 2015. Vol. 5. P. 72150. doi 10.1039/ C5RA11388A
- Kaur B., Kaur N., Kumar S. // Coord. Chem. Rev. 2018. Vol. 358. P. 13. doi 10.1016/ j.ccr.2017.12.002
- Wu D., Sedgwick A.C., Gunnlaugsson T., Akkaya E.U., Yoon J., James T.D. // Chem. Soc. Rev. 2017. Vol. 46. P. 7105. doi: 10.1039/C7CS00240H
- Kaur N., Kumar S. // Tetrahedron. 2011. Vol. 67. P. 9233. doi: 10.1016/j.tet.2011.09.003
- Khan S., Chen X., Almahri A., Allehyani E.S., Alhumaydhi F.A., Ibrahim M.M., Ali S. // J. Environ. Chem. Eng. 2021. Vol. 9. Article 106381. doi: 10.1016/j.jece.2021.106381
- Patil N.S., Dhake R.B., Ahamed M.I., Fegade U. // J. Fluoresc. 2020. Vol. 30. P. 1295. doi: 10.1007/s10895-020-02554-7
- Upadhyay S., Singh A., Sinha R., Omer S., Negi K. // J. Mol. Struct. 2019. Vol. 1193. P. 89. doi: 10.1016/j.molstruc.2019.05.007
- Wu D., Sedgwick A.C., Gunnlaugsson T., Akkaya E.U., Yoon J., James T.D. // Chem. Soc. Rev. 2017. Vol. 46. P. 7105. doi: 10.1039/C7CS00240H
- Daly B., Ling J., de Silva P. // Chem. Soc. Rev. 2015. Vol. 44. P. 4203. doi: 10.1039/C4CS00334A
- Fu Y., Finney N.S. // RSC Adv. 2018. Vol. 8. P. 29051. doi: 10.1039/C8RA02297F
- Yeung M.C., Yam V.W. // Chem. Soc. Rev. 2015. Vol. 44. P. 4192. doi: 10.1039/C4CS00391H
- Lee M.H., Kim J.S., Sessler J.L. // Chem. Soc. Rev. 2015. Vol. 44. P. 4185. doi: 10.1039/C4CS00280F
- Carter K.P., Young A.M., Palmer A.E. // Chem. Rev. 2014. Vol. 114. P. 4564. doi: 10.1021/cr400546e
- Sun W., Li M., Fan J., Peng X. // Acc. Chem. Res. 2019. Vol. 52. P. 2818. doi: 10.1021/acs.accounts.9b00340
- Wan H., Xu Q., Gu P., Li H., Chen D., Li N., He J., Lu J. // J. Hazard. Mater. 2021. Vol. 403. Article 123656.
- Popova O.S., Revinskii Yu.V., Tkachev V.V., Utenyshev A.N., Karlutova O.Yu., Starikov A.G., Dubonosov A.D., Bren V.A., Aldoshin S.M., Minkin V.I. // J. Mol. Struct. 2020. Vol. 1199. Article 127013. doi: 10.1016/j.molstruc.2019.127013
- Nikolaeva O.G., Shepelenko E.N., Tikhomirova K.S., Revinskii Yu.V., Dubonosov A.D., Bren V.A., Minkin V.I. // Mendeleev Commun. 2016. Vol. 26. P. 402. doi: 10.1016/j.mencom.2016.09.012
- Chi W., Qi Q., Lee R., Xu Z., Liu X. // J. Phys. Chem. (C). 2020. Vol. 124. P. 3793. doi: 10.1021/acs.jpcc.9b11673
- Oliveira E., Bertolo E., Nunez C., Pilla V., Santos H.M., Fernandez-Lodeiro J., Fernandez-Lodeiro A., Djafari J., Capelo J.L., Lodeiro C. // ChemistryOpen. 2018. Vol. 7. P. 9. doi: 10.1002/open.201700135
- Chen X., Pradhan T., Wang F., Kim J.S., Yoon J. // Chem. Rev. 2012. Vol. 112. P. 1910. doi: 10.1021/cr200201z
- Zheng H., Zhan X.Q., Bian Q.N., Zhang X.J. // Chem. Commun. 2013. Vol. 49. P. 429. doi: 10.1039/C2CC35997A
- Podshibyakin V.A., Shepelenko E.N., Karlutova O.Y., Dubonosova I.V., Borodkin G.S., Popova O.S., Zaichenko S.B., Dubonosov A.D., Bren V.A., Minkin V.I. // Tetrahedron. 2022. V. 109. Article 132710. doi: 10.1016/j.tet.2022.132710
- Hu J., Long C., Fu Q., Ni P., Yin Z. // J. Photochem. Photobiol. (A). 2019. Vol. 379. P. 105. doi: 10.1016/j.jphotochem.2019.04.031
- Choudhury N., Ruidas B., Mukhopadhyay C.D., De P. // ACS Appl. Polymer Mater. 2020. Vol. 2. P. 5077. doi: 10.1021/acsapm.0c00878
- Mondal S., Bandyopadhyay C., Ghosh K. // Supramol. Chem. 2019. Vol. 31. P. 1. doi: 10.1080/10610278.2018.1522444
- Mondal S., Ghosh K. // Supramol. Chem. 2019. Vol. 31. P. 645. doi: 10.1080/10610278.2019.1632456
- Deng F. Dongsheng Sun D., Yang S., Huang W., Huang C., Xu Z., Liu L. // Spectrochim. Acta (A). 2022. Vol. 268. Article 120662. doi: 10.1016/j.saa.2021.120662
- Sun J., Tian-rong Li T., Yang Z. // J. Photochem. Photobiol. (A). 2021. Vol. 411. Article 113207. doi: 10.1016/j.jphotochem.2021.113207
- Karuk Elmas S.N., Dinckan S., Arslan F.N., Aydin D., Savran T., Yilmaz I. // J. Photochem. Photobiol. (A). 2021. Vol. 421. Article 113521. doi: 10.1016/j.jphotochem.2021.113521
- Гельман Н.Э., Терентьева Е.А., Шанина Т.М., Кипаренко Л.М., Резл В. Методы количественного органического элементного микроанализа. М.: Химия, 1987.
- Wei Z., Liu Y.Q., Wang S.Z., Yao L., Nie H.F., Wang Y.A., Liu X.Y., Zheng Z.B., Li S. // Bioorg. Med. Chem. 2017. Vol. 25. P. 4497. doi: 10.1016/j.bmc.2017.06.041
- Kureshy R.I., Prathap K.J., Roy T., Maity N.C., Khan N.H., Abdi S.H.R., Bajaj H.C. // Adv. Synth. Catal. 2010. Vol. 352. P. 3053. doi: 10.1002/adsc.201000428
- Shu H., Wu X., Zhou B., Han Y., Jin M., Zhu J., Bao X. // Dyes Pigm. 2017. Vol. 136. P. 535. doi: 10.1016/j.dyepig.2016.08.063
Arquivos suplementares
