Structural Features of d2-Rhenium(V) Monomeric Octahedral Dioxocomplexes with Tridentate-Chelate, Monodentate Ligands [ReO2(Ltri)(Lmono)], and Tetradentate-Chelate Ligands [ReO2(Ltetra)] (A Review)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Molecular geometry features of 21 structurally characterized mononuclear octahedral dioxocomplexes of d2-rhenium(V) with mono-, tri- and tetradentate ligands [ReO2(Ltri)(Lmono)], [ReO2(Ltetra)] are discussed. In eleven cases, multiple-bonded Ooxo ligands are arranged in trans-positions to each other with OoxoReOoxo angles ranging within 172.9–180°. In ten structures, the ReO2 unit adopts cis-configuration with OoxoReOoxo angles vary within 106.7–124.8°. Re atoms possess either trans-octahedral coordination environment ReOoxo2X4 (X = N, P, As, O) or cis-structure ReOoxo2N2O2. Bonds Re=Ooxo in monomeric octahedral dioxocompounds d2-Re(V) (mean length 1.772 Å) are significantly longer those observed for monooxocomplexes d2-Re(V) (1.676–1.699 Å).

全文:

受限制的访问

作者简介

V. Sergienko

N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sergienko@igic.ras.ru
俄罗斯联邦, Moscow, 119991

A. Churakov

N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: sergienko@igic.ras.ru
ORCID iD: 0000-0003-3336-4022
俄罗斯联邦, Moscow, 119991

参考

  1. Порай-Кошиц М.А., Гилинская Э.А. // Кристаллохимия. М.: ВИНИТИ. Итоги науки и техники, 1966. С. 126.
  2. Порай-Кошиц М.А., Атовмян Л.О. // Коорд. хим. 1975. Т. 1. № 8. С. 1271.
  3. Griffith F., Wicing C. // J. Chem. Soc. (А). 1968. N 3. P. 397. doi: 10.1039/J19680000397
  4. Порай-Кошиц М.А. // Изв. Югосл. Кристаллогр. центра. 1974. Т. 9. С. 19.
  5. Порай-Кошиц М.А., Атовмян Л.О. // Кристаллохимия координационных соединений молибдена. М.: Наука, 1974. 231 с.
  6. Shustorovich E.M., Porai-Koshits M.A., Buslaev Yu. A. // Coord. Chem. Rev. 1975. Vol. 17. N 1. P. 1. doi: 10.1016/S0010-8545(00)80300-8
  7. Порай-Кошиц М.А., Сергиенко В.С. // Усп. хим. 1990. Т. 59. № 1. C. 86.
  8. Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. // Acta Crystallogr. (В). 2016. Vol. 72. N 2. P. 171. doi: 10.1107/S2052520616003954
  9. Sergienko V.S., Churakov A.V. // Crystallogr. Rep. 2022. Vol. 67. N 7. P. 1160. doi: 10.1134/S1063774522070276
  10. Сергиенко В.С., Чураков А.В. // ЖOX. 2023. Т. 93. № 9. С. 1445. doi 1031857/S0044460X23090135; Sergienko V.S., Churakov A.V. // Russ. J. Gen. Chem. 2023. Vol. 93. N 9. Р. 2311. doi: 10.1134/S107036322309013X
  11. Mazzoyya M.G. Pichaandi K,Rm, Fanwick P.E., Abu-Oma M.M. // Angew. Chem. Int. Ed. 2014. Vol. 53. N 32. P. 8329. doi: 10.1002/anie.201403788
  12. Korstannje T.Y., Lutz M., Jastrzebski Y.T.B.H., Gebbink R.J.M.K. // Organometallics. 2014. Vol. 33. N 9. P. 2201. doi: 10.1021/om401228u
  13. Che C.-M., Cheng J,Y,K., Cheung K.-K., Wong K.-T. // J. Chem. Soc. Dalton Trans. 1997. N 13. P. 2347. doi: 10.1039/A701300K
  14. Blackborn R.L., Jones L.M., Ram M.S. Sabat M., Hubb J.T. // Inorg. Chem. 1990. Vol. 29. N 10. P. 1791. doi: 10.1021/ic00335a005
  15. Bandoli G., Dolmella A., Gerber T.I.A., Luzipo D., du Preez J.G.H. // Inorg. Chim. Acta. 2001. Vol. 325. N 1–2. P. 215. doi: 10.1016/S0020-1693(01)00655-7
  16. Gerber T.I.A., Mayer P. // J. Nucl. Radiochem. Sci. 2005. Vol. 6. N 3. Р. 165. doi: 10.14494/jnrs2000.6.3_165
  17. Raju S., van Slagmaat C.A.M.R., Li J., Lutz M., Jasterzebski J.T.B.H., Moret M.-E., Gebbink R.J.M.K. // Organometallics. 2016. Vol. 35. N 13. P. 2178. doi: 10.1021/acs.organomet.6b00120
  18. Li J., Lutz M., Gebbink R.J.M.K. // Catalysts. 2020. Vol. 10. N 7. P. 754. doi: 10.3390/catal10070754
  19. Ng V.Y.-M., Tse C.-W., Guan X., Chang X., Yang C., Low K.-H., Lee K.H., Huang J.-S., Che C.-M. // Inorg. Chem. 2017. Vol. 56. N 24. P. 15066. doi: 10.1021/acs.inorgchem.7b02404
  20. Blake A.J., Greig J.A.M., Schroder M. // J. Chem. Soc. Dalton Trans. 1988. N 10. P. 2645. doi: 10.1039/DT9880002645
  21. Wang Y.-P., Che C.M., Wong K.Y., Peng S.M. // Inorg. Chem. 1993. Vol. 32. N 25. P. 5827. doi: 10.1021/ic00077a029
  22. Luna S.A., Bolzati C., Duatti A., Zucchini G.L., Bandoly G., Refosco F. // Inorg. Chem. 1992. Vol. 31. N 12. P. 2595. doi: 10.1021/ic00038a052
  23. Clemente D.A., Marzotto A. // Acta Crystallogr. (В). 2004. Vol. 60. N 3. P. 287. doi: 10.1107/S0108768104006391
  24. Göldner M., Galich L., Gornlissen U., Homborg H. // Z. anorg. allg. Chem. 2000. Vol. 626. N 4. P. 985. doi: 10.1002/(SICI)1521-3749(200004)626:4<985::AID-ZAAC985>3.0.CO;2-3
  25. Smith C.J., Katti K.V., Volkert W.A., Barbour L.J. // Inorg. Chem. 1997. Vol. 36. N 18. P. 3928. doi: 10.1021/ic970097z

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structure of [ReO2 (PNN)I] (3) and [ReO2) (Me3Tacn) (H2O)]+ (5) complexes according to RSA data.

下载 (180KB)
3. Fig. 2. The structure of the complexes [ReO2(BPMEN)]+ (7), [ReO2(BmdmPMEN)]+ (8), cis-[ReO2(Pyxn)]+ (14) and trans-[ReO2(Pyxn)]+ (15) according to RSA data.

下载 (355KB)
4. Fig. 3. Structure of [ReO2(Tpp)]+ (19) and [ReO2(DTBP) complexes]+ (21) according to the RSA.

下载 (222KB)

版权所有 © Russian Academy of Sciences, 2024