Нановолокна на основе ацетатов целлюлозы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследованы свойства растворов диацетата целлюлозы в ацетоне и смеси ацетон–вода при соотношениях 95:5, 93.5:7.5 и 90:10. Найдены оптимальные концентрации раствора диацетата целлюлозы для формирования нановолокон из смеси воды и ацетона с содержанием воды 7.5 мас%. Получены нановолокна диацетата целлюлозы в виде нетканых материалов со средним диаметром нановолокон 350±10 нм. С целью получения нановолокон целлюлозы с диаметром нитей 350–400 нм нановолокна диацетата целлюлозы подвергали гидролизу в 0.1 М. растворе гидроксида калия.

Полный текст

Доступ закрыт

Об авторах

А. А. Сарымсаков

Институт химии и физики полимеров Академии наук Республики Узбекистан

Автор, ответственный за переписку.
Email: sarimsakov1948@mail.ru
ORCID iD: 0000-0003-4562-7280
Узбекистан, Ташкент, 100128

А. И. Шукуров

Институт химии и физики полимеров Академии наук Республики Узбекистан

Email: sarimsakov1948@mail.ru
ORCID iD: 0000-0002-2889-0258
Узбекистан, Ташкент, 100128

Н. Ш. Ашуров

Институт химии и физики полимеров Академии наук Республики Узбекистан

Email: sarimsakov1948@mail.ru
ORCID iD: 0000-0001-5246-434X
Узбекистан, Ташкент, 100128

Х. Э. Юнусов

Институт химии и физики полимеров Академии наук Республики Узбекистан

Email: sarimsakov1948@mail.ru
ORCID iD: 0000-0002-4646-7859
Узбекистан, Ташкент, 100128

Список литературы

  1. Иноземцева О.А., Сальковский Ю.Е., Северюхина А.Н., Видяшева И.В., Петрова Н.В., Метвалли Х.А., Стецюра И.Ю., Горин Д.А. // Усп. хим. 2015. Т. 84. № 3. С. 251; Inozemtseva O.A., Salkovskiy Y.E., Severyukhina A.N., Vidyasheva I.V., Petrova N.V., Metwally H.A., Stetciura I.Y., Gorin D.A. // Russ. Chem. Rev. 2015. Vol. 84. N 3. P. 251. doi: 10.1070/RCR4435
  2. Kadomae Y., Taniguchi T., Sugimoto M., Koyama K. // Int. Polym. Proc. 2008. Vol. 23. P. 377.
  3. Megelski S., Stephens J.S., Rabolt J.F., Bruce C.D. // Macromolecules. 2002. Vol. 35. P. 8456. doi: 10.1021/ma020444a
  4. Li D., Xia Y. // Adv. Mater. 2004. Vol. 16. P. 1151. doi: 10.1002/adma.200400719
  5. Sill T.J., Recum H.V. // Biomaterials. 2008. Vol. 29. N 13. P. 1989. doi: 10.1016/j.biomaterials.2008.01.011
  6. Peranidze K., Safronova T.V., Kildeeva N.R. // Polymers. 2023. Vol. 15. P. 1174. doi: 10.3390/polym15051174
  7. Chen W., Ma H., Xing B. // Int J Biol Macromol. 2020. Vol. 20. P. 33121. doi: 10.1016/j.ijbiomac.2020.04.249
  8. Lee J., Moon J.Y., Lee J.C., Hwang T.I., Park C.H., Kim C.S. // Carbohydr. Polym. 2021. doi 10.1016/ j.carbpol.2020.117191
  9. Петров А.В., Симонов-Емельянов И.Д., Филатов Ю.Н. // Вестн. МИТХТ. 2012. Т. 7. № 5. С. 103.
  10. Юданова Т.Н., Филатов Ю.Н., Афанасов И.М. // Пласт. массы. 2013. № 9. С. 57.
  11. Ergashovich Y.K., Abdupatto O’g’li A.A., Shodievich A.N. // Polym. Adv. Technol. 2024. Vol. 35. N 7. P. e6496. doi: 10.1002/pat.6496
  12. Lyu Q., Peng B., Xie Z., Du S., Zhang L., Zhu J. // ACS Appl. Mater. Interfaces. 2020. Vol. 23. P. 57373. doi: 10.1021/acsami.0c17931
  13. Wsoo M.A., Shahir S., Mohd S.P., Nayan H.M., Razak I.A. // Carbohydr. Res. 2020. Vol. 491. P. 107978. doi 10.1016/ j.carres.2020.107978
  14. Vaseashta A. // Appl. Phys. Lett. 2007. Vol. 90. P. 9. doi: 10.1063/1.2709958
  15. Ольхов А.А., Староверова О.В., Гольдштрах М.А., Хватов А.В., Гумаргалиева К.З., Иорданский А.Л. // Хим. физика. 2016. Т. 35. № 10. С. 53.
  16. Crabbe-Mann M., Tsaoulidis D., Parhizkar M., Edirisinghe M. // Cellulose 2018. Vol. 25. P. 1687. doi: 10.1007/s10570-018-1673-y
  17. Um-i-Zahra S., Shen X.X., Li H., Zhu L. // J. Polym. Res. 2014. Vol. 21. P. 602. doi: 10.1007/s10965-014-0602-5
  18. Wang X.Y., Drew C., Lee S.H., Senecal K.J., Kumar J., Sarnuelson L.A. // Nano Lett. 2002. Vol. 2. P. 1273. doi: 10.1021/nl020216u
  19. Liu H.Q., Hsieh Y.L. // J. Polym. Sci. (B). 2002. Vol. 40. P. 2119. doi: 10.1002/polb.10261
  20. Son W.K., Youk J.H., Lee T.S., Park W.H. // J. Polym. Sci. (B). 2004. Vol. 42. P. 5. doi: 10.1002/polb.10668
  21. Тагер А.А. Физикохимия полимеров. М.: Химия, 1978. 544 с.
  22. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров. М.: Химия, 1996. 432 с.
  23. Голубев А.Е., Ларина Ю.Н., Кувшинова С.А., Бурмистров В.А. // Изв. вузов. Сер. хим. и химическая технология. 2015. Т. 58. № 10. С. 33.
  24. Потехина Л.Н., Седелкин В.М. // Вестн. СГТУ. 2011. № 1. С. 52.
  25. Мамажанов Г.О. Разработка технологии получения лакокрасочных материалов из нитро- и диацетатцеллюлозы. Наманган, 2022. 122 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимость вязкости растворов диацетата целлюлозы от концентрации растворителя ацетон–вода (%): 95:5 (1), 92.5:7.5 (2), 90:10 (3).

Скачать (67KB)
3. Рис. 2. Зависимость вязкости растворов диацетата целлюлозы различной концентрации (1 – 5%, 2 – 10%, 3 – 15%) от термодинамического качества растворителя.

Скачать (60KB)
4. Рис. 3. Реограммы растворов диацетата целлюлозы (ДАЦ) различной концентрации в смеси ацетон–вода при массовых соотношениях: 1 – ДАЦ 5% (90:10), 2 – ДАЦ 5% (92.5:7.5), 3 – ДАЦ 5% (95:5), 4 – ДАЦ 10% (90:10), 5 – ДАЦ 10% (92.5:7.5), 6 – ДАЦ 10% (95:5), 7 – ДАЦ 15% (90:10), 8 – ДАЦ 15% (92.5:7.5), 9 – ДАЦ 15% (95:5).

Скачать (115KB)
5. Рис. 4. СЭМ снимки нановолокон, полученных из 5%-ных растворов диацетата целлюлозы при различном увеличении: (а) ×1200, (б) ×3700.

Скачать (196KB)
6. Рис. 5. СЭМ снимки нановолокон, полученных из 10%-ных растворов диацетата целлюлозы при различном увеличении: (а) ×500, (б) ×1000.

Скачать (266KB)
7. Рис. 6. СЭМ микрофотографии нановолокон целлюлозы, полученных из 10%-ных растворов диацетата целлюлозы, содержащих 5 (а), 7.5 (б) и 10% (в) воды, в ацетоне после деацетилирования 0.1 М. водным раствором KОН.

Скачать (178KB)
8. Рис. 7. ИК спектры нановолокон диацетата целлюлозы (1) и нановолокон целлюлозы (2).

Скачать (113KB)
9. Рис. 8. Рентгеновские дифрактограммы нановолокон целлюлозы (1) и диацетата целлюлозы (2).

Скачать (59KB)

© Российская академия наук, 2024