Migration Properties and Structure of Phosphate Glasses Containing Alkali Metal Sulfates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper investigates a set of physico-chemical properties of glasses of the M2O–MPO3, M2SO4–MPO3 (M = Li, Na) systems and glasses of the same systems in which one alkali metal was replaced by another. All compositions were obtained using mortar technology in the manufacture of the initial charge. It was found that almost all the properties of the studied glasses differ slightly in their characteristics from the properties of glasses of similar compositions obtained using solid starting components. It is shown that the electrical properties of pure phosphate and phosphate-sulfate glasses with a commensurate volume concentration of the main current carriers, alkaline cations, are close, i. e. the presence of sulfate ions in mixed glass increases the electrical parameters insignificantly. The equivalent substitution of lithium cations for sodium cations in phosphate and phosphate-sulfate glasses is accompanied by a polychelic effect – a nonlinear change in electrical parameters, and in the phosphate-sulfate system (with a close volume concentration of current carrier ions) this effect is more pronounced.

Full Text

Restricted Access

About the authors

E. V. Bochagina

Peter the Great St. Petersburg Polytechnic University

Email: irina.s.yaroshenko@gmail.com
Russian Federation, St. Petersburg, 195251

V. V. Polyakova

Peter the Great St. Petersburg Polytechnic University

Email: irina.s.yaroshenko@gmail.com
ORCID iD: 0000-0003-4381-9836
Russian Federation, St. Petersburg, 195251

I. A. Sokolov

Peter the Great St. Petersburg Polytechnic University; I. V. Grebenshchikov Institute of Silicate Chemistry – branch of the National Research Center “Kurchatov Institute” – PNPI

Email: irina.s.yaroshenko@gmail.com
ORCID iD: 0000-0002-3904-3409
Russian Federation, St. Petersburg, 195251; St. Petersburg, 199034

I. S. Yaroshenko

Peter the Great St. Petersburg Polytechnic University

Author for correspondence.
Email: irina.s.yaroshenko@gmail.com
ORCID iD: 0000-0001-5775-6878
Russian Federation, St. Petersburg, 195251

References

  1. Минько Н.И., Биналиев И.М. // Стекло и керам. 2012. Т. 85. № 11. С. 3.
  2. Вайсман Я.И., Кетов А.А., Кетов П.А. // Физ. и хим. стекла. 2015. Т. 41. № 2. С. 214; Vaisman Y., Ketov A., Ketov P. // Glass Phys. Chem. 2015. Vol. 41. N 2. P. 157. doi: 10.1134/S1087659615020133
  3. Мартынов К.В., Захарова Е.В. // Радиоакт. отх. 2023. № 2(23). С. 63. doi 1025283/2587-9707-2023-2-63-81
  4. Sci Glass: Database and Information System. Version 9.0. Premium Edition. Newton: ITC, 2018. http//www.sciglass.info
  5. Зарецкая Г.Н. // Совр. наук. техн. 2007. № 6. С. 51.
  6. Бобкова Н.М., Трусова Е.Е. // Стекло и керамика. 2017. Т. 90. № 5. С. 7.
  7. Воронцов Б.С., Москвин В.В., Баитов Ю.В. // Компьютерное моделирование физико-химических свойств стекол и расплавов. Тр. Х Росс. Сем. Курган, 2010. С. 38.
  8. Сандитов Д.С., Бадмаев С.С. // Неорг. матер. 2019. Т. 55. № 1. С. 94; Sanditov D.S., Badmaev S.S. // Inorg. Mater. 2019. Vol. 55. P. 1046. doi: 10.1134/S0020168519100121
  9. Жабрев В.А., Свиридов С.И. // Физ. и хим. стекла. 2003. Т. 29. № 2. С. 210; Zhabrev V.A., Sviridov S.I. // Glass Phys. Chem. 2003. Vol. 29. P. 140. doi: 10.1023/A:1023403024610
  10. Пронкин А.А., Соколов И.А., Нараев В.Н., Лосева М.Н. // Физ. и хим. стекла. 1996. Т. 22. № 6. С. 728.
  11. Соколов И.А., Ильин А.А., Устинов Ю.Н., Валова Н.А., Пронкин А.А. // Физ. и хим. стекла. 2003. Т. 29. № 3. С. 421; Sokolov I.A., Il’in A.A., Ustinov Yu.N., Valova N.A., Pronkin A.A. // Glass Phys. Chem. 2003. Vol. 29. P. 548. doi: 10.1023/B:GPAC.0000007930.11101
  12. Свиридов С.И., Тюрнина З.Г., Тюрнина Н.Г. // Физ. и хим. стекла. 2020. T. 46. № 6. С. 553; Sviridov S.I., Tyurnina Z.G., Tyurnina N.G. // Glass Phys. Chem. 2020. Vol. 46. P. 526. doi: 10.1134/S1087659620060267
  13. Ganduli M., Rao K.J. // J. Non-Cryst. Sol. 1999. Vol. 243. P. 251.
  14. Архипов В.Г., Иванова Л.В., Мамошин В.Л. // Ж. прикл. спектр. 1986. Т. 45. № 3. С. 460.
  15. Непомилуев А.М., Плетнев Р.Н., Лапина О.Б., Козлова С.Г., Бамбуров В.Г. // Физ. и хим. стекла. 2002. Т. 28. № 1. С. 3; Nepomiluev A.M., Pletnev R.N., Lapina O.B., Kozlova S.G., Bamburov V.G. // Glass Phys. Chem. 2002. Vol. 28. N 1. P. 1. doi: 10.1023/A:1014295827303
  16. Орлова В.А., Козлов П.В., Джевелло К.А., Балакина В.А., Беланова Е.А., Галузин Д.Д., Ремизов М.Б. // Неорг. матер. 2019. Т. 55. № 8. С. 890; Orlova V.A., Kozlov P.V., Dzhevello K.A., Balakina V.A., Belanova Ye.A., Galuzin D.D., Remizov M.B. // Inorg. Mater. 2019. Vol. 55. P. 838. doi: 10.1134/S0020168519080119
  17. Колесова В.А., Игнатьев И.С., Калинина Н.Е. // Физ. и хим. стекла. 1976. Т. 2. № 5. С. 400.
  18. Соколов И.А., Валова Н.А., Тарлаков Ю.П., Пронкин А.А. // Физ. и хим. стекла. 2003. Т. 29. № 6. С. 760; Sokolov I.A., Il’in A.A., Ustinov Yu.N., Valova N.A., Pronkin A.A. // Glass Phys. Chem. 2003. Vol. 29. P. 548. doi: 10.1023/B:GPAC.0000007930.11101
  19. Соколов И.А. Стеклообразные твердые электролиты. Структура и природа проводимости. СПб: Политехн. унив., 2010. С. 392.
  20. Chopinet M.H., Massol I.I., Barton I.L. // Glastechn. Ber. 1983. Vol. 53. N 1. P. 65.
  21. Добош А.Ю., Соколов И.А., Химич Н.Н. // Электрохимия. 2024. Т. 60. № 6. С. 415; Dobosh A., Sokolov I., Khimich N. // Electrochemistry. 2024. Vol. 60. N 6. P. 415. doi: 10.1134/S1023193524700071

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. IR spectra of glasses of Li2O–LiPO3 and Li2SO4–LiPO3 systems. 1 – glassy LiPO3, 2 – 0.1Li2O⋅0.9LiPO3, 3 – 0.18Li2SO4⋅0.82LiPO3, 4 – 0.27Li2SO4⋅0.73LiPO3.

Download (38KB)
3. Scheme 1.

Download (19KB)
4. 2. Concentration dependence of electrical conductivity (at 293 K) in glasses of Li2SO4–LiPO3 (1) and Li2O–LiPO3 (2) systems [4, 19].

Download (49KB)
5. 3. IR spectra of glassy sodium metaphosphate NaPO3 (1) and glass composition 0.24Na2SO4⋅0.76NaPO3 (2).

Download (43KB)
6. 4. Electrical properties of glasses of Na2SO4–NaPO3 (1) and Na2O–NaPO3 (2) systems.

Download (47KB)
7. Scheme 2.

Download (4KB)
8. Scheme 3.

Download (10KB)
9. Fig. 5. Dependence of changes in electrical conductivity and activation energy of electrical conductivity on the composition of equivalent substitution of Li+ ions for Na+ ions in glasses of xLiPO3–(1–x) systemsNaPO3(1) and x(0.18Li2SO4× 0.82LiPO3)–(1–x)(0.19Na2SO4⋅0.81NaPO3) (2), here 0 x 1.

Download (76KB)

Copyright (c) 2025 Russian Academy of Sciences