Quantum-Chemical Study of Catalysis in the Reaction of N,O-Dimethyl Carbamate with Methylamine
- Autores: Samuilov A.Y.1, Kozhanova E.P.1, Samuilov Y.D.1
- 
							Afiliações: 
							- Kazan National Research Technological University
 
- Edição: Volume 95, Nº 1-2 (2025)
- Páginas: 17-26
- Seção: Articles
- URL: https://cardiosomatics.ru/0044-460X/article/view/679800
- DOI: https://doi.org/10.31857/S0044460X25010036
- EDN: https://elibrary.ru/AHPUPQ
- ID: 679800
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Non-catalytic and sodium acetate and sodium methoxide catalyzed reactions of N,O-dimethyl carbamate with methylamine were studied using quantum-chemical hybrid density functional methods M06 and B3LYP. All interactions proceed through concerted cyclic transition states. Non-catalytic and sodium acetate-catalyzed reactions are characterized by a large activation free energy barrier. The transformation catalyzed by sodium methoxide is characterized by a negative enthalpy of activation and a low free energy of activation.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Samuilov
Kazan National Research Technological University
														Email: ysamuilov@yandex.ru
				                	ORCID ID: 0000-0001-7763-8326
				                																			                												                	Rússia, 							Kazan, 420015						
E. Kozhanova
Kazan National Research Technological University
														Email: ysamuilov@yandex.ru
				                	ORCID ID: 0009-0004-6676-9629
				                																			                												                	Rússia, 							Kazan, 420015						
Y. Samuilov
Kazan National Research Technological University
							Autor responsável pela correspondência
							Email: ysamuilov@yandex.ru
				                	ORCID ID: 0000-0002-5943-7448
				                																			                												                	Rússia, 							Kazan, 420015						
Bibliografia
- Polyurea: Synthesis, Properties, Composites, Production, and Applications / Eds. P. Pasbakhsh, D. Mohotti, K. Palaniandy, Sh. Ambarine, B. Auckloo. Amsterdam: Elsevier, 2023. 430 p.
- Toader G., Rusen E., Teodorescu M., Diacon A., Stanescu P.O., Rotariu T., Rotariu A. // J. Appl. Polym. Sci. 2016. Vol. 133. N 38. P. 43967. doi: 10.1002/app.43967
- Zhang R., Huang W., Lyu P., Yan S., Wang X., Ju J. // Polymers. 2022. Vol. 14. N 13. P. 2670. doi: 10.3390/polym14132670
- Wu G., Wang X., Wang Y., Ji C., Zhao C. // Mater. Des. 2022. Vol. 224. P. 111371. doi 10.1016/ j.matdes.2022.111371
- Luo Y., Pu K., Gao J., Zhou Y., Wan J., Bai X. // J. Appl. Polym. Sci. 2024. Vol. 141. N 18. P. e55304. doi: 10.1002/app.55304
- Lai W., Qin B., Xu J.F., Zhang X. // J. Polym. Sci. 2024. Vol. 62. N 5. P. 900. doi: 10.1002/pol.20230455
- Luo J., Wang T., Sim C., Li Y. // Polymers. 2022. Vol. 14. N 14. P. 2808. doi: 10.3390/polym14142808
- Toader G., Diacon A., Axinte S.M., Mocanu A., Rusen E. // Polymers. 2024. Vol. 16. N 4. P. 454. doi: 10.3390/polym16040454
- Iqbal N., Kumar D., Roy P.K. // J. Appl. Polym. Sci. 2018. Vol. 135. N 40. P. 46730. doi: 10.1002/app.46730
- Isocyanates: Sampling, Analysis, and Health Effects / Eds. J. Lesage, I. DeGraff, R. Danchik. West Conshohocken: ASTM International, 2001. 133 p.
- Shi R., Jiang S., Cheng H., Wu P., Zhang C., Arai M., Zhao F. // ACS Sust. Chem. Eng. 2020. Vol. 8. N 50. P. 18626. doi: 10.1021/acssuschemeng.0c06911
- Lin C., Xie K., Tang D. // J. Appl. Polym. Sci. 2022. Vol. 139. N 28. P. e52513. doi: 10.1002/app.52513
- Zheng L., Xi Q., Hu G., Wang B., Song D., Zhang Y., Liu Y. // Polymers. 2024. Vol. 16. N 7. P. 993. doi: 10.3390/polym16070993
- Tundo P., Arico F. // ChemSusChem. 2023. Vol. 16. N 23. P. e202300748. doi: 10.1002/cssc.202300748
- Verma K., Sharma A., Singh J., Badru R. // Sustain. Chem. Pharm. 2023. Vol. 33. P. 101117. doi 10.1016/ j.scp.2023.101117
- Самуилов А.Я., Алекбавев Д.Р., Самуилов Я.Д. // ЖOpХ. 2018. Т. 54. № 10. С. 1441; Samuilov A.Y., Alekbaev D.R., Samuilov Y.D. // Russ. J. Org. Chem. 2018. Vol. 54. N 10. P. 1453. doi: 10.1134/S1070428018100032
- Самуилов А.Я., Самуилов Я.Д. // ЖФХ. 2022. Т. 96. № 2. С. 205; Samuilov A.Y., Samuilov Y.D. // Russ. J. Phys. Chem. (A). 2022. Vol. 96. N 2. P. 293. doi: 10.1134/S0036024422020248
- Ma S., Liu C., Sablong R.J., Noordover B.A., Hensen E.J., van Benthem R.A., Koning C.E. // ACS Catal. 2016. Vol. 6. N 10. P. 6883. doi: 10.1021/acscatal.6b01673
- Ban J.L., Li S.Q., Yi C.F., Zhao J.B., Zhang Z.Y., Zhang J.Y. // Chin. Polym. Sci. 2019. Vol. 37. P. 43. doi: 10.1007/s10118-018-2165-0
- Rhoné B., Semetey V. // Synlett. 2017. Vol. 28. N 15. P. 2004. doi: 10.1055/s-0036-1588866
- Zhao L., Semetey V. // ACS Omega. 2021. Vol. 6. N 6. P. 4175. doi: 10.1021/acsomega.0c04855
- Bakkali-Hassani C., Berne D., Ladmiral V., Caillol S. // Macromolecules. 2022. Vol. 55. N 18. P. 7974. doi: 10.1021/acs.macromol.2c01184
- Alam M.M., Varala R., Seema V. // Mini-Rev. Org. Chem. 2024. Vol. 21. N 5. P. 555. doi: 10.2174/1570193X20666230507213511
- Kožený V., Mindl J., Štěrba V. // Chem. Pap. 1997. Vol. 51. N 1. P. 29.
- Prachi R., Tanwar D.K., Gill M.S. // SynOpen. 2023. Vol. 7. N 4. P. 555. doi: 10.1055/a-2157-5925
- Ohshima T., Hayashi Y., Agura K., Fujii Y., Yoshiyama A., Mashima K. // Chem. Commun. 2012. Vol. 48. N 44. P. 5434. doi: 10.1039/c2cc32153j
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09. Revision A.1. Gaussian Inc, Wallingford, 2009.
- Sholl D.S., Steckel J.A. Density Functional Theory: A Practical Introduction. Hoboken: John Wiley & Sons, 2023. 224 p.
- Density Functional Theory: Modeling, Mathematical Analysis, Computational Methods, and Applications / Eds. E. Cancès, G. Friesecke. Cham: Springer, 2023. 580 p.
- Wynne‐Jones W.F.K., Eyring H. // J. Chem. Phys. 1935. Vol. 3. N 8. P. 492. doi: 10.1063/1.1749713
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 










