Quantum-Chemical Study of Catalysis in the Reaction of N,O-Dimethyl Carbamate with Methylamine

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Non-catalytic and sodium acetate and sodium methoxide catalyzed reactions of N,O-dimethyl carbamate with methylamine were studied using quantum-chemical hybrid density functional methods M06 and B3LYP. All interactions proceed through concerted cyclic transition states. Non-catalytic and sodium acetate-catalyzed reactions are characterized by a large activation free energy barrier. The transformation catalyzed by sodium methoxide is characterized by a negative enthalpy of activation and a low free energy of activation.

Texto integral

Acesso é fechado

Sobre autores

A. Samuilov

Kazan National Research Technological University

Email: ysamuilov@yandex.ru
ORCID ID: 0000-0001-7763-8326
Rússia, Kazan, 420015

E. Kozhanova

Kazan National Research Technological University

Email: ysamuilov@yandex.ru
ORCID ID: 0009-0004-6676-9629
Rússia, Kazan, 420015

Y. Samuilov

Kazan National Research Technological University

Autor responsável pela correspondência
Email: ysamuilov@yandex.ru
ORCID ID: 0000-0002-5943-7448
Rússia, Kazan, 420015

Bibliografia

  1. Polyurea: Synthesis, Properties, Composites, Production, and Applications / Eds. P. Pasbakhsh, D. Mohotti, K. Palaniandy, Sh. Ambarine, B. Auckloo. Amsterdam: Elsevier, 2023. 430 p.
  2. Toader G., Rusen E., Teodorescu M., Diacon A., Stanescu P.O., Rotariu T., Rotariu A. // J. Appl. Polym. Sci. 2016. Vol. 133. N 38. P. 43967. doi: 10.1002/app.43967
  3. Zhang R., Huang W., Lyu P., Yan S., Wang X., Ju J. // Polymers. 2022. Vol. 14. N 13. P. 2670. doi: 10.3390/polym14132670
  4. Wu G., Wang X., Wang Y., Ji C., Zhao C. // Mater. Des. 2022. Vol. 224. P. 111371. doi 10.1016/ j.matdes.2022.111371
  5. Luo Y., Pu K., Gao J., Zhou Y., Wan J., Bai X. // J. Appl. Polym. Sci. 2024. Vol. 141. N 18. P. e55304. doi: 10.1002/app.55304
  6. Lai W., Qin B., Xu J.F., Zhang X. // J. Polym. Sci. 2024. Vol. 62. N 5. P. 900. doi: 10.1002/pol.20230455
  7. Luo J., Wang T., Sim C., Li Y. // Polymers. 2022. Vol. 14. N 14. P. 2808. doi: 10.3390/polym14142808
  8. Toader G., Diacon A., Axinte S.M., Mocanu A., Rusen E. // Polymers. 2024. Vol. 16. N 4. P. 454. doi: 10.3390/polym16040454
  9. Iqbal N., Kumar D., Roy P.K. // J. Appl. Polym. Sci. 2018. Vol. 135. N 40. P. 46730. doi: 10.1002/app.46730
  10. Isocyanates: Sampling, Analysis, and Health Effects / Eds. J. Lesage, I. DeGraff, R. Danchik. West Conshohocken: ASTM International, 2001. 133 p.
  11. Shi R., Jiang S., Cheng H., Wu P., Zhang C., Arai M., Zhao F. // ACS Sust. Chem. Eng. 2020. Vol. 8. N 50. P. 18626. doi: 10.1021/acssuschemeng.0c06911
  12. Lin C., Xie K., Tang D. // J. Appl. Polym. Sci. 2022. Vol. 139. N 28. P. e52513. doi: 10.1002/app.52513
  13. Zheng L., Xi Q., Hu G., Wang B., Song D., Zhang Y., Liu Y. // Polymers. 2024. Vol. 16. N 7. P. 993. doi: 10.3390/polym16070993
  14. Tundo P., Arico F. // ChemSusChem. 2023. Vol. 16. N 23. P. e202300748. doi: 10.1002/cssc.202300748
  15. Verma K., Sharma A., Singh J., Badru R. // Sustain. Chem. Pharm. 2023. Vol. 33. P. 101117. doi 10.1016/ j.scp.2023.101117
  16. Самуилов А.Я., Алекбавев Д.Р., Самуилов Я.Д. // ЖOpХ. 2018. Т. 54. № 10. С. 1441; Samuilov A.Y., Alekbaev D.R., Samuilov Y.D. // Russ. J. Org. Chem. 2018. Vol. 54. N 10. P. 1453. doi: 10.1134/S1070428018100032
  17. Самуилов А.Я., Самуилов Я.Д. // ЖФХ. 2022. Т. 96. № 2. С. 205; Samuilov A.Y., Samuilov Y.D. // Russ. J. Phys. Chem. (A). 2022. Vol. 96. N 2. P. 293. doi: 10.1134/S0036024422020248
  18. Ma S., Liu C., Sablong R.J., Noordover B.A., Hensen E.J., van Benthem R.A., Koning C.E. // ACS Catal. 2016. Vol. 6. N 10. P. 6883. doi: 10.1021/acscatal.6b01673
  19. Ban J.L., Li S.Q., Yi C.F., Zhao J.B., Zhang Z.Y., Zhang J.Y. // Chin. Polym. Sci. 2019. Vol. 37. P. 43. doi: 10.1007/s10118-018-2165-0
  20. Rhoné B., Semetey V. // Synlett. 2017. Vol. 28. N 15. P. 2004. doi: 10.1055/s-0036-1588866
  21. Zhao L., Semetey V. // ACS Omega. 2021. Vol. 6. N 6. P. 4175. doi: 10.1021/acsomega.0c04855
  22. Bakkali-Hassani C., Berne D., Ladmiral V., Caillol S. // Macromolecules. 2022. Vol. 55. N 18. P. 7974. doi: 10.1021/acs.macromol.2c01184
  23. Alam M.M., Varala R., Seema V. // Mini-Rev. Org. Chem. 2024. Vol. 21. N 5. P. 555. doi: 10.2174/1570193X20666230507213511
  24. Kožený V., Mindl J., Štěrba V. // Chem. Pap. 1997. Vol. 51. N 1. P. 29.
  25. Prachi R., Tanwar D.K., Gill M.S. // SynOpen. 2023. Vol. 7. N 4. P. 555. doi: 10.1055/a-2157-5925
  26. Ohshima T., Hayashi Y., Agura K., Fujii Y., Yoshiyama A., Mashima K. // Chem. Commun. 2012. Vol. 48. N 44. P. 5434. doi: 10.1039/c2cc32153j
  27. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09. Revision A.1. Gaussian Inc, Wallingford, 2009.
  28. Sholl D.S., Steckel J.A. Density Functional Theory: A Practical Introduction. Hoboken: John Wiley & Sons, 2023. 224 p.
  29. Density Functional Theory: Modeling, Mathematical Analysis, Computational Methods, and Applications / Eds. E. Cancès, G. Friesecke. Cham: Springer, 2023. 580 p.
  30. Wynne‐Jones W.F.K., Eyring H. // J. Chem. Phys. 1935. Vol. 3. N 8. P. 492. doi: 10.1063/1.1749713

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Ball-rod models of intermediates IM1, IM2 and the TS1 transition state in the reaction of N,O-dimethyl carbamate with methylamine. Calculation data M06/6-311++G(df, p).

Baixar (122KB)
3. Fig. 2. Ball-rod models of intermediates IM3, IM4, and the TS2 transition state in the zinc acetate-catalyzed reaction of N,O-dimethicarbamate with methylamine. Calculation data M06/6-311++G(df, p).

Baixar (184KB)
4. 3. Ball-rod models of AM5, AM6 intermediates and S3 transition state in the sodium methylate-catalyzed reaction of N,O-dimethicarbamate with methylamine. Calculation data M06/6-311++G(df, p).

Baixar (147KB)
5. Scheme 1.

Baixar (10KB)
6. Scheme 2.

Baixar (12KB)
7. Scheme 3.

Baixar (14KB)
8. Scheme 4.

Baixar (6KB)
9. Scheme 5.

Baixar (38KB)
10. Scheme 6.

Baixar (55KB)
11. Scheme 7.

Baixar (44KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025