Rhodamine 6G based molecular ion-active switches of optical and fluorescent properties
- Autores: Shepelenko E.N1, Podshibyakin V.A2, Dubonosova I.V2, Karlutova O.Y.2, Dubonosov A.D1, Bren V.A2
- 
							Afiliações: 
							- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences
- Institute of Physical and Organic Chemistry, Southern Federal University
 
- Edição: Volume 93, Nº 8 (2023)
- Páginas: 1216-1225
- Seção: Articles
- URL: https://cardiosomatics.ru/0044-460X/article/view/666900
- DOI: https://doi.org/10.31857/S0044460X23080073
- EDN: https://elibrary.ru/IXJEJN
- ID: 666900
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Palavras-chave
Sobre autores
E. Shepelenko
Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences
V. Podshibyakin
Institute of Physical and Organic Chemistry, Southern Federal University
I. Dubonosova
Institute of Physical and Organic Chemistry, Southern Federal University
O. Karlutova
Institute of Physical and Organic Chemistry, Southern Federal University
A. Dubonosov
Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences
														Email: aled@ipoc.sfedu.ru
				                					                																			                												                														
V. Bren
Institute of Physical and Organic Chemistry, Southern Federal University
Bibliografia
- Molecular Photoswitches: Chemistry, Properties, and Applications / Ed. Z.L. Pianowski. Weinheim: Wiley-VCH, 2022.
- Molecular Switches / Eds B.L. Feringa, W.R. Browne. Weinheim: Wiley, 2011.
- Magri D.C. // Coord. Chem. Rev. 2021. Vol. 426. Article 213598. doi: 10.1016/j.ccr.2020.213598
- Pianowski Z.L. // Chem. Eur. J. 2019. Vol. 25. P. 25128. doi: 10.1002/chem.201805814
- Knipe P.C., Thompson S., Hamilton A.D. // Chem. Sci. 2015. Vol. 6. P. 1630. doi: 10.1039/c4sc03525a
- Qu D., Wang Q., Zhang Q., Ma X., Tian H. // Chem. Rev. 2015. Vol. 115. P. 7543. doi: 10.1021/cr5006342
- Bianchi A., Delgado-Pinar E., García-Espana E., Giorgi C., Pina F. // Coord. Chem. Rev. 2014. Vol. 260. P. 156. doi: 10.1016/j.ccr.2013.09.023
- Fitzmaurice O., Bartkowski M., Giordani S. // Front. Chem. 2022. Vol. 10. Article 859450. doi: 10.3389/fchem.2022.859450
- Volaric J., Szymanski W., Simeth N.A., Feringa B.L. // Chem. Soc. Rev. 2021. Vol. 50. P. 12377. doi: 10.1039/d0cs00547a
- Li M., Zhao J., Chu H., Mi Y., Zhou Z., Di Z., Zhao M., Li L. // Adv. Mater. 2019. Vol. 31. Article 1804745. doi: 10.1002/adma.201804745
- Andréasson J., Pischel U. // Coord. Chem. Rev. 2021. Vol. 429. Article 213695. doi: 10.1016/j.ccr.2020.213695
- Welleman I.M., Hoorens M.W.H., Feringa B.L., Hendrikus H. Boersma H.H., Szymański W. // Chem. Sci. 2020. Vol. 11. P. 11672. doi: 10.1039/D0SC04187D
- Wang G., Zhang J. // J. Photochem. Photobiol. (C). 2012. Vol. 13. P. 299. doi: 10.1016/j.jphotochemrev.2012.06.002
- Krämer J., Kang R., Grimm L.M., De Cola L., Picchetti P., Biedermann F. // Chem. Rev. 2022. Vol. 122. P. 3459. doi: 10.1021/acs.chemrev.1c00746
- Khan S., Chen X., Almahri A., Allehyani E.S., Alhumaydhi F.A., Ibrahim M.M., Ali S. // J. Environ. Chem. Eng. 2021. Vol. 9. Article 106381. doi: 10.1016/j.jece.2021.106381
- Patil N.S., Dhake R.B., Ahamed M.I., Fegade U. // J. Fluoresc. 2020. Vol. 30. P. 1295. doi: 10.1007/s10895-020-02554-7
- Upadhyay S., Singh A., Sinha R., Omer S., Negi K. // J. Mol. Struct. 2019. Vol. 1193. P. 89. doi: 10.1016/j.molstruc.2019.05.007
- Wan H., Xu Q., Gu P., Li H., Chen D., Li N., He J., Lu J. // J. Hazard. Mater. 2021. Vol. 403. Article 123656.
- Wu D., Sedgwick A.C., Gunnlaugsson T., Akkaya E.U., Yoon J., James T.D. // Chem. Soc. Rev. 2017. Vol. 46. P. 7105. doi: 10.1039/C7CS00240H
- Lee M.H., Kim J.S., Sessler J.L. // Chem. Soc. Rev. 2015. Vol. 44. P. 4185. doi: 10.1039/C4CS00280F
- Kaur B., Kaur N., Kumar S. // Coord. Chem. Rev. 2018. Vol. 358. P. 13. doi 10.1016/ j.ccr.2017.12.002
- Saleem M., Lee K.H. // RSC Adv. 2015. Vol. 5. P. 72150. doi 10.1039/ C5RA11388A
- Wu J., Kwon B., Liu W., Anslyn E.V., Wang P., Kim J.S. // Chem. Rev. 2015. Vol. 115. P. 7893. doi: 10.1021/cr500553d
- Nikolaeva O.G., Shepelenko E.N., Tikhomirova K.S., Revinskii Yu.V., Dubonosov A.D., Bren V.A., Minkin V.I. // Mendeleev Commun. 2016. Vol. 26. P. 402. doi: 10.1016/j.mencom.2016.09.012
- Wang Y., Wang X., Ma W., Lu R., Zhou W., Gao H. // Chemosensors. 2022. Vol. 10. Article 399. doi: 10.3390/chemosensors10100399
- Chi W., Qi Q., Lee R., Xu Z., Liu X. // J. Phys. Chem. (C). 2020. Vol. 124. P. 3793. doi: 10.1021/acs.jpcc.9b11673
- Chen X., Pradhan T., Wang F., Kim J.S., Yoon J. // Chem. Rev. 2012. Vol. 112. P. 1910. doi: 10.1021/cr200201z
- Kaur R., Saini S., Kaur N., Singh N., Jang D.O. // Spectrochim. Acta (A). 2020. Vol. 225. Article 117523. doi: 10.1016/j.saa.2019.117523
- Oliveira E., Bertolo E., Nunez C., Pilla V., Santos H.M., Fernandez-Lodeiro J., Fernandez-Lodeiro A., Djafari J., Capelo J.L., Lodeiro C. // ChemistryOpen. 2018. Vol. 7. P. 9. doi: 10.1002/open.201700135
- Mondal S., Bandyopadhyay C., Ghosh K. // Supramol. Chem. 2019. Vol. 31. P. 1. doi: 10.1080/10610278.2018.1522444
- Hu J., Long C., Fu Q., Ni P., Yin Z. // J. Photochem. Photobiol. (A). 2019. Vol. 379. P. 105. doi: 10.1016/j.jphotochem.2019.04.031
- Dong M., Ma T.H., Zhang A.J., Dong Y.M., Wang Y.W., Peng Y. // Dyes Pigm. 2010. Vol. 87 P. 164. doi: 10.1016/j.dyepig.2010.03.015
- Khan S., Chen X., Almahri A., Allehyani E.S., Alhumaydhi F.A., Ibrahim M.M., Ali S. // J. Environ. Chem. Eng. 2021. Vol. 9. Article 106381. doi: 10.1016/j.jece.2021.106381
- Gopalakrishnan K., Angamaly S.A., Pradeep S.D., Madhusoodhanan D.T., Manoharan D.K., Mohanan P.V. // J. Fluoresc. 2022. Vol. 32. P. 189. doi: 10.1007/s10895-021-02839-5
- Podshibyakin V.A., Shepelenko E.N., Karlutova O.Y., Dubonosova I.V., Borodkin G.S., Popova O.S., Zaichenko S.B., Dubonosov A.D., Bren V.A., Minkin V.I. // Tetrahedron. 2022. Vol. 110. Article 132710. doi: 10.1016/j.tet.2022.132710
- Shepelenko E.N., Podshibyakin V.А., Dubonosova I.V., Karlutova O.Yu., Dubonosov A.D., Bren V.A., Minkin V.I. // Russ. J. Gen. Chem. 2022. Vol. 92. P. 2436. doi: 10.1134/S10703632221100349
- Попов Л.Д., Шепеленко Е.Н., Подшибякин В.А., Валова Т.М., Венидиктова О.В., Айт А.О., Дубоносов А.Д. // ЖОХ. 2023. Т. 93. С. 417
- Popov L.D., Shepelenko E.N., Podshibyakin V.A., Valova T.M., Venidiktova O.V., Ayt A.O., Dubonosov A.D. // Russ. J. Gen. Chem. 2023. Vol. 93. P. 535. doi: 10.1134/S107036322303009X
- Roy A., Shee U., Mukherjee A., Mandal S.K., Roy P. // ACS Omega. 2019. Vol. 4. P. 6864. doi: 10.1021/acsomega.9b00475
- Wu J., Hwang I., Kim K.S., Kim J.S. // Org. Lett. 2007. Vol. 9. P. 907. doi: 10.1021/ol070109c
- Ершов В.В., Никифоров Г.А., Володькин А.А. Пространственно-затрудненные фенолы. М.: Химия, 1972.
- Xu Z., Mao X., Wang Y., Wu W., Mao P., Zhao X., Fan Y., Li H. // RSC Adv. 2017. Vol. 7. P. 42312. doi: 10.1039/c7ra05424f
- Wang Y., Chang H., Wu W., Peng W., Yan Y., He C., Chen T., Zhao X., Xu Z. // Sensors and Actuators (B). 2016. Vol. 228. P. 395. doi: 10.1016/j.snb.2016.01.052
- Said A.I., Staneva D., Angelova S., Grabchev I. // J. Photochem. Photobiol. (A). 2022. Vol. 433. Article 114218. doi: 10.1016/j.jphotochem.2022.114218
- Suganya S., Naha S., Velmathi S. // ChemistrySelect. 2018. Vol. 3. P. 723. doi: 10.1002/slct.201801222
- Mukherjee S., Talukder S. // J. Fluoresc. 2017. Vol. 27. P. 1567. doi: 10.1007/s10895-016-1974-1
- Гельман Н.Э., Терентьева Е.А., Шанина Т.М., Кипаренко Л.М., Резл В. Методы количественного органического элементного микроанализа. М.: Химия, 1987.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
