Synthesis and Comparative Study of Silicone Composites Containing Sodium Diclofenac Using New Types of Cross-Linking Agents

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A new type of silicone composites in the form of films containing sodium diclofenac were obtained, which can potentially be used as transdermal patches. Glycerol and propylene glycol analogues of tetraethoxysilane, tetrakis(2,3-dihydroxypropoxy)silane and tetrakis(2-hydroxypropoxy)silane, were first used to cure polydimethylsiloxane with terminal hydroxyl groups (PDMS-OH) to obtain silicone composites. It was shown that these cross-linking agents have a number of advantages over tetraethoxysilane.

Texto integral

Acesso é fechado

Sobre autores

M. Atabekyan

Scientific and Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Email: grigstepan@yahoo.com
ORCID ID: 0000-0002-5265-5469
Armênia, Yerevan, 0014

Z. Farmazyan

Scientific and Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Email: grigstepan@yahoo.com
ORCID ID: 0000-0001-9841-5586
Armênia, Yerevan, 0014

E. Hakopyan

Scientific and Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Email: grigstepan@yahoo.com
ORCID ID: 0000-0003-2409-1894
Armênia, Yerevan, 0014

M. Torosyan

Scientific and Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Email: grigstepan@yahoo.com
ORCID ID: 0009-0008-3399-2137
Armênia, Yerevan, 0014

V. Topuzyan

Scientific and Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Email: grigstepan@yahoo.com
ORCID ID: 0000-0002-1721-1993
Armênia, Yerevan, 0014

S. Grigoryan

Scientific and Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Autor responsável pela correspondência
Email: grigstepan@yahoo.com
ORCID ID: 0000-0002-7193-9803
Armênia, Yerevan, 0014

Bibliografia

  1. Haley R.M., von Recum H.A. // Exp. Biol. Med. 2019. Vol. 244. P. 433. doi: 10.1177/1535370218787770
  2. Blanca-Lopez N., Soriano V., Garcia-Martin E., Canto G., Blanca M. // J. Asthma Allergy. 2019. Vol. 12. P. 217. doi: 10.2147/JAA.S164806
  3. McGettigan P., Henry D. // PLoS Medicine. 2013. Vol. 10. N 2. P. 1. e1001388. doi: 10.1371/journal.pmed.1001388
  4. Davis A., Robson J. // British J. Gen. Pract. 2016. Vol. 66. P. 172. doi: 10.3399/bjgp16X684433
  5. Awachat A., Shukla D., Bhola N.D. // Cureus. 2022. Vol. 14. P. e30411. doi: 10.7759/cureus.30411
  6. Kapo S.M., Rakanović-Todić M., Burnazović-Ristić L., Kusturica J., Ćesić A.K., Ademović E., Aganović-Mušinović I. // J. King Saud Univ. Sci. 2023. Vol. 35. N 1. P. 102394. doi: 10.1016/j.jksus.2022.102394
  7. Snorradottir B.S., Gudnason P.I., Scheving R., Thorsteinsson F., Masson M. // Pharmazie. 2009. Vol. 64. P. 19. doi: 10.1691/ph.2008.8206
  8. Ailincai D., Dorobanțu A.M., Dima B., Irimiciuc Ș.A., Lupașcu C., Agop M., Olguta O. // J. Immunol. Res. 2020. P. 1. doi: 10.1155/2020/3124304
  9. Sa’adon S., Ansari M.N.M., Razak S.I.A., Anand J.S., Nayan N.H.M., Ismail A.E., Haider A. // Polymer. 2021. Vol. 15. P. 2459. doi: 10.3390/polym13152459
  10. Stewart S.A., Domínguez-Robles J., Donnelly R.F., Larrañeta E. // Polymer. 2018. Vol. 10. N 12. P. 1379. doi: 10.3390/polym10121379
  11. Soroory H., Mashak A., Rahimi A. // Iran. Polym. J. 2013. Vol. 22. P. 791. doi: 10.1007/s13726-013-0178-7
  12. Mashak A., Rahimi A. // Iran. Polym. J. 2009. Vol. 18. N 4. P. 279.
  13. Mikolaszek B., Kazlauske J., Larsson A., Sznitowska M. // Polymer. 2020. Vol. 12. N 7. P. 1520. doi: 10.3390/polym12071520
  14. Gafar Ahmed M., AlHammad Z.A., Al-Jandan B. // Cureus. 2023. Vol. 15. N 2. P. e 34524.
  15. Mojsiewicz-Pieńkowska K. // Handbook of Polymers for Pharmaceutical Technologies, 2015. Vol. 2. P. 363. doi: 10.1002/9781119041412
  16. Aliyar H., Schalau G. 2nd // Therapeutic Deliv. 2015. Vol. 6. N 7. P. 827. doi: 10.4155/tde.15.39
  17. Snorradottir B.S., Gudnason P.I., Scheving R., Thorsteinsson F., Masson M. // Pharmazie. 2009. Vol. 64. P. 19. https://doi.org/10.1691/ph.2008.8206
  18. Malcolm R., McCullagh S., Woolfson A., Gorman S., Jones D., Cuddy J. // J. Control. Release. 2003. Vol. 97. P. 313. doi: 10.1016/j.jconrel.2004.03.029
  19. Mark J.E., Sullivan J.L. // J. Chem. Phys. 1977. Vol. 66. P. 1006. doi: 10.1063/1.434056
  20. Brook M.A., Holloway A.C., Kenneth K.N., Hrynyk M., Moore C., Ryan L. // Int. J. Pharm. 2008. Vol. 358. P. 121. doi: 10.1016/j.ijpharm.2008.02.029
  21. Soulas D.N., Sanopoulou M., Papadokostaki K.G. // Mater. Sci. Eng. 2013. Vol. C33. P. 2122. doi 10.1016/ j.msec.2013.01.031
  22. Mark J.E., Jiang C.Y., Tang M.Y. // Macromolecules. 1984. Vol. 17. P. 2613. doi: 10.1021/ma00142a026
  23. Yuan Q.W., Mark J.E. // Macromol. Chem. Phys. 1999. Vol. 200. P. 206. doi: 10.1002/(SICI)1521-3935(19990101) 200:1%3C206::AID-MACP206%3E3.0.CO;2-S
  24. Robinson M.W.C., Swain A.C., Khan N.A. // Polym. Degrad. Stab. 2015. Vol. 116. P. 88. doi 10.1016/ j.polymdegradstab.2013.10.011
  25. Rajendra V., Chen Y., Brook M.A. // Polym. Chem. 2010. Vol. 1. P. 312. doi: 10.1039/B9PY00220K
  26. Чупахин О.Н., Хонина Т.Г., Ларионов Л.П., Шадрина Е.В., Бойко А.А., Забокрицкий Н.А., Волков А.А. Пат. РФ 2382046 С1; Б. И. 2010. № 5
  27. Atabekyan M.L., Farmazyan Z.M., Grigoryan S.G., Lavanant L., Topuzyan V.O. Pat. EU 4322906 (2024); Pat. JP2024514128A (2024).
  28. Mazurek A., Brook M.A., Skov A.L. // Langmuir. 2018. Vol. 34. P. 11559. doi 0.1021/acs.langmuir.8b02039
  29. Григорян С.Г., Акопян Э.А., Акобян Р.М., Фармазян З.М., Атабекян М.Л., Топузян В.О. // ЖОХ. 2023. Т. 93. № 8. С. 1281. doi: 10.31857/S0044460X23080139; Grigoryan S.G., Hakopyan E.H., Hakobyan R.M., Farmazyan Z.M., Atabekyan M.L., Topuzyan V.O. // Russ. J. Gen. Chem. 2023. Vol. 93. N 8. P. 2048. doi: 10.1134/S1070363223080133
  30. Mercier K., Brule Th., Fromentoux L. Quality control of sugar content in beverages using Raman spectroscopy. https://www.horiba.com/

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1.

Baixar (146KB)
3. Fig. 1. Kinetics of diclofenac desorption from composites 1-4 in phosphate buffer (pH = 6.86) (a) and 0.9% NaCl solution (b). The standard deviations of R2 measurements for the curves of the graphs are: (a) 0.97-0.98 and (b) 0.99.

Baixar (5KB)
4. Fig. 2. Kinetics of diclofenac desorption from composites No. 6-8 in buffer (a) and 0.9% NaCl solution (b). The standard deviations of R2 measurements for the curves of the graphs are: (a) 0.98 and (b) 0.94-0.98.

Baixar (4KB)
5. Fig. 3. Kinetics of diclofenac desorption from optimal composites No. 8 (TDGPS-G sample) and No. 9 (TDGPS-K sample) in phosphate buffer (1 - TDGPS-G, 2 - TDGPS-K) and 0.9% NaCl solution (3 - TDGPS-G, 4 - TDGPS-K). The standard deviations of R2 measurements for the graph curves are 0.96-0.98.

Baixar (2KB)
6. Fig. 4. SEM images of composite films No. 8 (TDGPS-G sample) (left column) and No. 9 (TDGPS-K sample) (right column).

Baixar (157KB)
7. Fig. 5. The first mapping region of composite No. 8.

Baixar (53KB)
8. Fig. 6. Second mapping region of composite No. 8.

Baixar (51KB)
9. Fig. 7. The third mapping region of composite No. 8.

Baixar (59KB)
10. Table 4_Fig. 1

Baixar (17KB)
11. Table 4_Fig. 2

Baixar (27KB)
12. Table 4_Fig. 3

Baixar (29KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024