Mechanism of chlorotriflamidation of vinylsilanes with N,N-dichlorotriflamide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The mechanism of the reaction of vinylsilanes with N , N -dichlorotriflamide and the effect of a substituent at the silicon atom on the reaction course and on the charge distribution in substrates and their carbon analogues were studied by DFT method. The C=C bond in vinylsilanes and alkenes is polarized in the opposite way. The reaction proceeds in two stages: chlorination of the substrate with the formation of a chloronium ion, and its opening at the Cβ-Cl bond by the N -chlorotriflamide anion. Transition states of two stages were calculated. The reaction products are hydrolyzed to NH-derivatives; their IR spectra and supramolecular structure, including cyclic and linear dimers, calculated in the gas phase and in a polar medium, were studied.

Sobre autores

N. Chipanina

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

L. Oznobikhina

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

I. Ushakova

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

B. Shainyan

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: bagrat@irioch.irk.ru

Bibliografia

  1. Мирскова А.Н., Дроздова Т.И., Левковская Г.Г., Воронков М.Г. // Усп. хим. 1989. Т. 58. С. 417
  2. Mirskova A.N., Drozdova T.I., Levkovskaya G.G., Voronkov M.G. // Russ. Chem. Rev. 1989. Vol. 58. P. 250. doi: 10.1070/RC1989v058n03ABEH003438
  3. Левковская Г.Г., Дроздова Т.И., Розенцвейг И.Б., Мирскова А.Н. // Усп. хим. 1999. Т. 68. С. 638
  4. Levkovskaya, G.G., Drozdova, T.I., Rozentsveig, I.B., Mirskova, A.N. Russ. Chem. Rev. 1999. Vol. 68. P. 581. doi: 10.1070/RC1999v068n07ABEH000476
  5. Шаинян Б.А. // Усп. хим. 2022. Т. 91. RCR5052
  6. Shainyan B.A. // Russ. Chem. Rev. 2022. Vol. 91. RCR5052. doi: 10.1070/RCR5052
  7. Ushakova I.V., Shainyan B.A. // Mendeleev Commun. 2020. Vol. 30. Р. 117. doi: 10.1016/j.mencom.2020.01.039
  8. Ushakova I.V., Shainyan B.A. // Mendeleev Commun. 2020. Vol. 30. Р. 794. doi: 10.1016/j.mencom.2020.01.039
  9. Idem. ibid. 794.
  10. Ушакова И.В., Шаинян Б.А. // ЖОрХ. 2022. Т. 58. С. 387. doi: 10.31857/S0514749222040036
  11. Ushakova I.V., Shainyan B.A. // Russ. J. Org. Chem. 2022. Vol. 58. P. 484. doi: 10.1134/S1070428022040030
  12. Weinhold F., Landis C.R. Valency and Bonding: A Natural Bond Orbital Donoracceptor Perspective. Cambridge: University Press, 2005.
  13. Glendening E.D., Reed A.E., Carpenter J.E., Weinhold F. NBO Version 3.1. Gaussian. Inc. Pittsburgh. PA. CT 2003.
  14. Breneman C.M., Wiberg K.B. // J. Comput. Chem. 1990. Vol. 11. P. 361. doi: 10.1002/jcc.540110311. S2CID 96760978
  15. Jensen F. Introduction to Computational Chemistry. Chichester: Wiley, 2006.
  16. Cramer C.J. Essentials of Computational Chemistry: Theories and Models. Chichester: Wiley, 2004.
  17. Shainyan B.A., Kirpichenko S.V., Freeman F. // J. Am. Chem. Soc. 2004. Vol. 126. P. 11456. doi: 10.1021/ja047083u
  18. Alkorta I., Rozas I., Mó O., Yáñez M., Elguero J. // J. Phys. Chem. (A). 2001. Vol. 105. P. 7481. doi: 10.1021/jp0116407
  19. Smith B.J., Radom L. // Chem. Phys. Lett. 1995. Vol. 245. P. 123. doi 0009-2614(95)00988-4
  20. Chipanina N.N., Oznobikhina L.P., Sterkhova I.V., Ganin A.S., Shainyan B.A. // J. Mol Struct. 2020. Vol. 1219. P. 128534. doi: 10.1016/j.molstruc.2020.128534
  21. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam N.J., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, revision E.01; Gaussian, Inc.: Wallingford, CT, 2009.
  22. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 5648. doi: 10.1063/1.464913
  23. Lee C., Yang W., Parr R.G. Phys. Rev. (B). 1988. Vol. 37. P. 785. doi: 10.1103/PhysRevB.37.785
  24. Krishnan R., Binkley J.S., Seeger R., Pople J.A. // J. Chem. Phys. 1980. Vol. 72. P. 650. doi: 10.1063/1.438955
  25. Peng C., Ayala P.Y., Schlegal H.B., Frisch M.J. // J. Comput. Chem. 1996 Vol. 17. P. 49. doi: 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023