ЭЛЕКТРОХИМИЧЕСКОЕ ВОССТАНОВЛЕНИЕ ГАЗОВ С ИСПОЛЬЗОВАНИЕМ ГАЗОДИФФУЗИОННЫХ ЭЛЕКТРОДОВ: ОБЗОР ПОСЛЕДНИХ ДОСТИЖЕНИЙ

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Практическое применение электрохимического восстановления газов с получением ценных продуктов затруднено медленным массопереносом и низкой растворимостью газов в большинстве электролитов. При использовании газодиффузионных электродов улучшается массоперенос газа к поверхности электрода, что способствует поддержанию высокой концентрации реагента вблизи слоя катализатора и позволяет увеличить выход продукта в десятки раз. В статье представлен обзор работ, посвященных электрохимическому восстановлению О2, СО, СО2, N2, NO с использованием ячеек с газодиффузионным электродом. Приведена информация об электродных материалах и характеристиках процессов. В реакции восстановления СО2 на электродных материалах на основе Au, Ag, Zn, Со, Fe, Ni основным продуктом является СО, при использовании материалов на основе Bi, Pb, Sb, In, Sn с высокой селективностью образуется НСООН. Низшие углеводороды, спирты и карбоновые кислоты могут быть получены при использовании электродных материалов на основе Cu. Восстановление О2 с образованием Н2О2 происходит при использовании электродных материалов на основе С, Fe, Ti, Ag. Образование NH3 при восстановлении N2 или NO происходит при использовании материалов на основе C, Ca, Cu. Электрохимические ячейки с газодиффузионными электродами могут быть использованы как элементы комплексных систем по улавливанию и переработке СО2 и реакторов непрерывного действия. Ведутся разработки конструкций электрохимических ячеек с двумя газодиффузионными электродами и электродов с площадью поверхности более 1 м2. Описаны особенности сборки газодиффузионных электродов, проблемы и пути развития технологии. Приводится сравнение процессов электровосстановления газов в системах с погружными и газодиффузионными электродами.

Sobre autores

N. Mal'tseva

Novosibirsk State University; G.K. Boreskov Institute of Catalysis, Siberian Branch of the RAS

Autor responsável pela correspondência
Email: m.lebedeva2@nsu.ru
630090, г. Новосибирск, ул. Пирогова, д. 1; 630090, г. Новосибирск, пр. Академика Лаврентьева, д. 5

P. Nikolaichuk

Novosibirsk State University

Email: m.lebedeva2@nsu.ru
630090, г. Новосибирск, ул. Пирогова, д. 1

M. Lebedeva

Novosibirsk State University; G.K. Boreskov Institute of Catalysis, Siberian Branch of the RAS

Email: m.lebedeva2@nsu.ru
630090, г. Новосибирск, ул. Пирогова, д. 1; 630090, г. Новосибирск, пр. Академика Лаврентьева, д. 5

D. Kozlov

Novosibirsk State University; G.K. Boreskov Institute of Catalysis, Siberian Branch of the RAS

Email: m.lebedeva2@nsu.ru
630090, г. Новосибирск, ул. Пирогова, д. 1; 630090, г. Новосибирск, пр. Академика Лаврентьева, д. 5

Bibliografia

  1. [1] Venkatramanan V., Bhadra S., Maddirala S., Singh A., Prasad S., Rathore D., Sevda S. Role of electrochemistry and electrochemical technologies for environmental bioremediation // Advances in environmental electrochemistry / Eds D. A. Jadhav, M. Behera, S. Sevda, M. P. Shah. Amsterdam: Elsevier, 2024. P. 313–334. https://doi.org/10.1016/B978-0-443-18820-6.00011-4
  2. [2] Espinoza-Montero P. J., Martínez-Huitle C. A. Advancing environmental sustainability through electrochemical innovations // J. Solid State Electrochem. 2025. V. 29. N 8. P. 3051–3052. https://doi.org/10.1007/s10008-025-06341-x
  3. [3] Li X. Development in electrochemical technology for environmental wastewater treatment // Int. J.
  4. Electrochem. Sci. 2022. V. 17. N 12. ID 2212110. https://doi.org/10.20964/2022.12.104
  5. [4] Huang Q., Huang L., Wang Z., Liao H., Yan J., Li H., Guo Y., Zhang H. Research and prospects of electrochemical technology and educational innovation in water pollution treatment // Water Emerg. Contam. & Nanoplast. 2025. V. 4. N 1. ID 8. https://doi.org/10.20517/wecn.2024.79
  6. [5] Rabiee H., Ma B., Yang Y., Li F., Yan P., Wu Y., Zhang X., Hu S., Wang H., Ge L., Zhu Z. Advances and challenges of carbon-free gas-diffusion electrodes (GDEs) for electrochemical CO2 reduction // Adv. Funct. Mater. 2025. V. 35. N 1. ID 2411195. https://doi.org/10.1002/adfm.202411195
  7. [6] Zhang X., Meng X., Zhao H., Zhou W., Gao J., Zhao G. Review of H2O2 generation from O2 electroreduction by gas diffusion electrodes: From homogeneous to heterogeneous electrocatalysis // J. Electroanal. Chem. 2024. V. 974. ID 118700. https://doi.org/10.1016/j.jelechem.2024.118700
  8. [7] Rabiee H., Ge L., Zhang X., Hu S., Li M, Yuan Z. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: A review // Energy Environ. Sci. 2021. V. 14. N 4. P. 1959–2008. https://doi.org/10.1039/D0EE03756G
  9. [8] Mazzucato M., Durante C. Comparative analysis of rotating electrode and gas diffusion electrode methods for assessing activity and stability of Fe-NC based catalysts in ORR // Electrochim. Acta. 2023. V. 463. ID 142801. https://doi.org/10.1016/j.electacta.2023.142801
  10. [9] Alinejad S., Quinson J., Wiberg G. K. H., Schlegel N., Zhang D., Li Y., Reichenberger S., Barcikowski S., Arenz M. Electrochemical reduction of CO2 on Au electrocatalysts in a zero-gap, half-cell gas diffusion electrode setup: A systematic performance evaluation and comparison to an H-cell setup // ChemElectroChem. 2022. V. 9. N 12. ID e202200341. https://doi.org/10.1002/celc.202200341
  11. [10] Кузьмин А. В., Шаинян Б. А. Механизмы реакций каталитического электрохимического восстановления кислорода (ORR) и углекислого газа (CO2RR) // Успехи химии. 2023. Т. 92. № 6. ID RCR5085 [Kuzmin A. V., Shainyan B. A. Mechanisms of catalytic electrochemical reactions of oxygen reduction (ORR) and carbon dioxide reduction (CO2RR) // Russ. Chem. Rev. 2023. V. 92. N 6. ID RCR5085. https://doi.org/10.59761/RCR5085]
  12. [11] Küngas R., Blennow P., Heiredal-Clausen T., Holt T., Rass-Hansen J., Primdahl S., Hansen J. B. eCOs – A commercial CO2 electrolysis system developed by Haldor Topsoe // ECS Trans. 2017. V. 78. N 1. P. 2879–2884. https://doi.org/10.1149/07801.2879ecst
  13. [12] Jia S., Zhu Q., Han S., Zhai J., Dong M., Xia W., Xing X., Wu H., He M., Han B. Ultra-fast synthesis of three-dimensional porous Cu/Zn heterostructures for enhanced carbon dioxide electroreduction // Chem. Sci. 2023. V. 14. N 41. P. 11474–11480. https://doi.org/10.1039/D3SC03317A
  14. [13] Wang M., Luo J. A coupled electrochemical system for CO2 capture, conversion and product purification // eScience. 2023. V. 3. N 5. ID 100155. https://doi.org/10.1016/j.esci.2023.100155
  15. [14] Tao H., Chang H., Wang F., Zhang Z., Min S. An integrated carbonized wood-based gas-diffusion electrode for high-current-density CO electrosynthesis in the flow cells // Sust. Energy Fuels. 2024. V. 8. N 8. P. 1641–1649. https://doi.org/10.1039/D4SE00018H
  16. [15] Lv X., Liu Q., Yang H., Wang J., Wu X., Li X., Qi Z., Yan J., Wu A., Cheng T., Wu H. B. Nanoconfined molecular catalysts in integrated gas diffusion electrodes for high-current-density CO2 electroreduction // Adv. Funct. Mater. 2023. V. 33. N 12. ID 2301334. https://doi.org/10.1002/adfm.202301334
  17. [16] Yoshida S., Sampei M., Todoroki N., Hisamura E., Nakao K., Albrecht K., Wadayama T. Surface modification of gold by carbazole dendrimers for improved carbon dioxide electroreduction // Chem. Commun. 2023. V. 59. N 23. P. 3459–3462. https://doi.org/10.1039/D3CC00350G
  18. [17] Eagle C., Neri G., Piercy V. L., Younis K., Siritanaratkul B., Cowan A. J. A manganese complex on a gas diffusion electrode for selective CO2 to CO reduction // Sust. Energy Fuels. 2023. V. 7. N 9. P. 2301–2307. https://doi.org/10.1039/D3SE00236E
  19. [18] Pu X., Zhang W., Ma M., Shi D., Han S., Xiong L. Atomic nickel on controllable mesoporous carbon nanospheres to boost electrochemical carbon dioxide reduction // Ionics. 2023. V. 29. N 9. P. 3683–3692. https://doi.org/10.1007/s11581-023-05095-8
  20. [19] Wei N., Zhao K., Zhou Z., Wang Y. C., Sun S. G. Impact of pore structure on electrochemical reduction of carbon dioxide in iron-and nitrogen-doped carbon materials: Solid–liquid interface versus solid–gas–liquid triple-phase boundary // J. Phys. Chem. C. 2023. V. 127. N 6. P. 2981–2987. https://doi.org/10.1021/acs.jpcc.2c08467
  21. [20] Hoffmann H., Kutter M., Osiewacz J., Paulisch-Rinke M. C., Lechner S., Ellendorff B., Hilgert A., Manke I., Turek T., Roth C. Highly selective Ag foam gas diffusion electrodes for CO2 electroreduction by pulsed hydrogen bubble templation // EES Catal. 2024. V. 2. N 1. P. 286–299. https://doi.org/10.1039/D3EY00220A
  22. [21] Du X., Zhang P., Zhang G., Gao H., Zhang L., Zhang M., Wang T., Gong, J. Confinement of ionomer for electrocatalytic CO2 reduction reaction via efficient mass transfer pathways // Natl. Sci. Rev. 2024. V. 11. N 2. ID nwad149. https://doi.org/10.1093/nsr/nwad149
  23. [22] Kanase R. S., Zewdie G. M., Arunachalam M., Badiger J., Sayed S. A., Ahn K. S., Ha J.-S., Sim U., Shin H., Kang, S. H. Surface engineering of ZnO electrocatalyst by N doping towards electrochemical CO2 reduction // J. Energy Chem. 2024. V. 88. P. 71–81. https://doi.org/10.1016/j.jechem.2023.09.007
  24. [23] Feng S., Wang X., Cheng D., Luo Y., Shen M., Wang J., Zhao W., Fang S., Zheng H., Ji L., Zhang X., Xu W., Liang Y., Sautet P., Zhu J. Stabilizing *CO2 intermediates at the acidic interface using molecularly dispersed cobalt phthalocyanine as catalysts for CO2 reduction // Angew. Chem. Int. Ed. 2024. V. 63. N 8. ID e202317942. https://doi.org/10.1002/anie.202317942
  25. [24] Fan J., Pan B., Wu J., Shao C., Wen Z., Yan Y., Wang Y., Li Y. Immobilized tetraalkylammonium cations enable metal-free CO2 electroreduction in acid and pure water // Angew. Chem. Int. Ed. 2024. V. 63. N 9. ID e202317828. https://doi.org/10.1002/anie.202317828
  26. [25] Chen G., Ge L., Ma B., Kuang Y., Rabiee H., Dorosti F., Nanjundan A. K., Zhu Z., Wang H. Pore accessibility matters in CO2 electrolysis: Preventing H2 formation and boosting triple-phase boundary on microtubular gas-diffusion electrodes // Appl. Catal. B: Environ. Energy. 2025. V. 363. ID 124803. https://doi.org/10.1016/j.apcatb.2024.124803
  27. [26] Zhou B., Li Z., Zhang C., Lu L. Upcycling waste protein and heavy metal into single-atom catalytic gas diffusion electrode for CO2 reduction // Front. Environ. Sci. Eng. 2025. V. 19. N 4. ID 54. https://doi.org/10.1007/s11783-025-1974-y
  28. [27] Yamada T., Iwase K., Todoroki N., Honma I. High specific activity during electrochemical CO2 reduction through homogeneous deposition of gold nanoparticles on gas diffusion electrodes // ACS Appl. Energy Mater. 2025. V. 8. N 2. P. 821–829. https://doi.org/10.1021/acsaem.4c02254
  29. [28] Li S.-H., Hu S., Liu H., Liu J., Kang X., Ge S., Zhang Z., Yu Q., Liu B. Two-dimensional metal coordination polymer derived indium nanosheet for efficient carbon dioxide reduction to formate // ACS Nano. 2023. V. 17. N 10. P. 9338–9346. https://doi.org/10.1021/acsnano.3c01059
  30. [29] Shen H., Zhou C., He Z., Wang C., Zhang J., Hou B., Xu F., Liu Y., Wang C. Continuous gas-to-liquid conversion for carbon-efficient electroreduction of CO2 // ChemRxiv. 2023. https://doi.org/10.26434/chemrxiv-2023-rtsmv
  31. [30] Колягин Г. А., Таран О. П. Электрохимическое восстановление диоксида углерода до формиата в сажевом газодиффузионном электроде с оловянным катализатором // Электрохимия. 2024. Т. 60. № 7. С. 467–472. https://doi.org/10.31857/S0424857024070019
  32. https://www.elibrary.ru/pqmhuw
  33. [Kolyagin G. A., Taran O. P. Electrochemical reduction of carbon dioxide to formate in the acetylene-black gas-diffusion electrode with a tin catalyst // Russ. J. Electrochem. 2024. V. 60. N 7. P. 507–512. https://doi.org/10.1134/S1023193524700149].
  34. [31] Колягин Г. А., Таран О. П. Электрохимическое восстановление диоксида углерода до формиата в кислом электролите в сажевом газодиффузионном электроде со свинцовым катализатором // Электрохимия. 2023. Т. 59. № 10. С. 606–609. https://doi.org/10.31857/S0424857023100092 https://www.elibrary.ru/whwhtl
  35. [Kolyagin G. A., Taran O. P. Carbon dioxide electroreduction to formate in acid electrolytes in the acetylene black gas-diffusion electrode with lead catalyst // Russ. J. Electrochem. 2023. V. 59. N 10. P. 764–766. https://doi.org/10.1134/S1023193523100087].
  36. [32] Shitrit Y., Karmel T., Rajput S., Cohen Y. S., Edri E. Catalytic layer microstructure in pulsed electrodeposited bismuth-based gas diffusion electrodes used for CO2 reduction to formate // Energy Fuels. 2025. V. 39. N 12. P. 5965–5973. https://doi.org/10.1021/acs.energyfuels.4c05106
  37. [33] Husein I., Hadi J. M., Surendar A., Gryzunova N. N., Khairullina R. G., Bokov D. O., Hoi H. T. Bismuth oxide nanostructure supported on Cu foam as efficient electrocatalyst toward carbon dioxide electroreduction // Ionics. 2023. V. 29. N 8. P. 3212–3223. https://doi.org/10.1007/s11581-023-05000-3
  38. [34] Cao X., Wulan B., Wang Y., Ma J., Hou S., Zhang J. Atomic bismuth induced ensemble sites with indium towards highly efficient and stable electrocatalytic reduction of carbon dioxide // Sci. Bull. 2023. V. 68. N 10. P. 1008–1016. https://doi.org/10.1016/j.scib.2023.04.026
  39. [35] Song D., Zhang S., Ning H., Fei X., Wang M., Wang X., Wu W., Zhao Q., Li Y., Wu M. Self-supporting BiCu/carbon hybrid nanofiber membrane promotes efficient CO2 electroreduction to formate // Sci. China Mater. 2024. V. 67. N 3. P. 788–795. https://doi.org/10.1007/s40843-023-2742-9
  40. [36] Wang P., Wang X., Chandra S., Lielpetere A., Quast T., Conzuelo F., Schuhmann W. Hybrid enzyme-electrocatalyst cascade modified gas-diffusion electrodes for methanol formation from carbon dioxide // Angew. Chem. Int. Ed. 2025. V. 64. N 12. ID e202422882. https://doi.org/10.1002/anie.202422882
  41. [37] Díaz-Sainz G., Fernández-Caso K., Ávila-Bolívar B., Montiel V., Solla-Gullón J., Alvarez-Guerra M., Irabien A. Advances in the development of innovative Bi-Sn-Sb-based gas diffusion electrodes for continuous CO2 electroreduction to formate // J. CO2 Util. 2025. V. 95. ID 103070. https://doi.org/10.1016/j.jcou.2025.103070
  42. [38] Medvedev J. J., Tracey C., Engelhardt H., Steksova Y., Krivoshapkin P., Krivoshapkina E., Klinkova A. Hands-on electrochemical reduction of CO2: Understanding electrochemical principles through active learning // J. Chem. Educ. 2022. V. 99. N 2. P. 1036–1043. https://doi.org/10.1021/acs.jchemed.1c01004
  43. [39] Rawat K. S., Mahata A., Pathak B. Thermochemical and electrochemical CO2 reduction on octahedral Cu nanocluster: Role of solvent towards product selectivity // J. Catal. 2017. V. 349. P. 118–127. https://doi.org/10.1016/j.jcat.2017.03.011
  44. [40] Rufer S., Nitzsche M., Garimella S., Lake J., Varanasi K. K. Hierarchically conductive electrodes unlock stable and scalable CO2 electrolysis // ChemRxiv. 2023. https://doi.org/10.26434/chemrxiv-2023-c2zz0
  45. [41] Nabil S. K., Roy S., Algozeeb W. A., Al-Attas T., Bari M. A. A., Zeraati A. S. Kannimuthu K., Demingos P. G., Rao A., Tran T. N., Wu X., Bollini P., Lin H., Singh C. V., Tour J. M., Ajayan P. M., Kibria M. G. Bifunctional gas diffusion electrode enables in situ separation and conversion of CO2 to ethylene from dilute stream // Adv. Mater. 2023. V. 35. N 24. ID. 2300389. https://doi.org/10.1002/adma.202300389
  46. [42] Xu Z., Xie Y., Wang Y. Pause electrolysis for acidic CO2 reduction on 3-dimensional Cu // Mater. Rep. Energy. 2023. V. 3. N 1. ID 100173. https://doi.org/10.1016/j.matre.2022.100173
  47. [43] Bian L., Zhang Z. Y., Tian H., Tian N. N., Ma Z., Wang Z. L. Grain boundary-abundant copper nanoribbons on balanced gas-liquid diffusion electrodes for efficient CO2 electroreduction to C2H4 // Chin. J. Catal. 2023. V. 54. P. 199–211. https://doi.org/10.1016/S1872-2067(23)64540-1
  48. [44] Rihm S. D., Kovalev M. K., Lapkin A. A., Ager J. W., Kraft M. On the role of C4 and C5 products in electrochemical CO2 reduction via copper-based catalysts // Energy Environ. Sci. 2023. V. 16. N 4. P. 1697–1710. https://doi.org/10.1039/D2EE03752A
  49. [45] Lyu X., Li J., Zhang T., Li Z., Hwang I. H., Sun C., Jafta C. J., Yang J., Toops T. J., Cullen D. A., Serov A., Wu J. Revealing the activity and selectivity of ppm level copper in gas diffusion electrodes towards CO and CO2 electroreduction // EES Catal. 2023. V. 1. N 2. P. 117–124. https://doi.org/10.1039/D2EY00071G
  50. [46] Wang X., Miao M., Tang B., Duan H., Zhu F., Zhang H., Zhang X., Yin W.-J., Fu Y. Chlorine-induced mixed valence of CuOx/C to promote the electroreduction of carbon dioxide to ethylene // Nano Res. 2023. V. 16. N 7. P. 8827–8835. https://doi.org/10.1007/s12274-023-5554-9
  51. [47] Vichou E., Perazio A., Adjez Y., Gomez-Mingot M., Schreiber M. W., Sánchez-Sánchez C. M., Fontecave M. Tuning selectivity of acidic carbon dioxide electrolysis via surface modification // Chem. Mater. 2023. V. 35. N 17. P. 7060–7068. https://doi.org/10.1021/acs.chemmater.3c01326
  52. [48] Takamatsu D., Fukatani N., Yoneyama A., Hirano T., Hirai K., Yabuuchi S., Watanabe K., Kamiya K., Nakanishi S. Dynamic relocation of copper catalysts in gas diffusion electrodes during CO2 electroreduction // J. Am. Chem. Soc. 2025. V. 147. N 27. P. 24103–24112. https://doi.org/10.1021/jacs.5c07944
  53. [49] Sanjuán I., Kumbhar V., Prymak O., Ulbricht M., Andronescu C., Fischer L. Intrinsically conductive and Cu-functionalized polymer-composite membranes as gas diffusion electrodes for CO2 electroreduction // ChemSusChem. 2025. V. 18. N 2. ID e202401228. https://doi.org/10.1002/cssc.202401228
  54. [50] Rabiee H., Heffernan J. K., Ge L., Zhang X., Yan P., Marcellin E., Hu S., Zhu Z., Wang H., Yuan Z. Tuning flow-through Cu-based hollow fiber gas-diffusion electrode for high-efficiency carbon monoxide (CO) electroreduction to C2+ products // Appl. Catal. B: Environmental. 2023. V. 330. ID 122589. https://doi.org/10.1016/j.apcatb.2023.122589
  55. [51] Hejazi S. A., Taghipour F. Polytetrafluoroethylene-based gas diffusion electrode for electrochemical generation of hydrogen peroxide // Electrochim. Acta. 2023. V. 439. ID 141695. https://doi.org/10.1016/j.electacta.2022.141695
  56. [52] Zhang Y., Mascaretti L., Melchionna M., Henrotte O., Kment S., Fornasiero P., Naldoni A. Thermoplasmonic in situ fabrication of nanohybrid electrocatalysts over gas diffusion electrodes for enhanced H2O2 electrosynthesis // ACS Catal. 2023. V. 13. N 15. P. 10205–10216. https://doi.org/10.1021/acscatal.3c01837
  57. [53] Xia B., Huang Q., Wu K., Jiang L., Li M., Yu L., Ding S., Nie Z., Hua D., Duan J., Chen S. Dynamic gas-diffusion electrodes for oxygen electroreduction to hydrogen peroxide // AIChE J. 2023. V. 69. N 5. ID e18022. https://doi.org/10.1002/aic.18022
  58. [54] Zhou W., Xie L., Wang Y., Ding Y., Meng X., Sun F. Gao J., Zhao G. Oxygen-rich hierarchical activated coke-based gas diffusion electrode enables highly efficient H2O2 synthesis via O2 electroreduction // Sep. Pur. Tech. 2023. V. 307. ID 122740. https://doi.org/10.1016/j.seppur.2022.122740
  59. [55] Li M., Zhu Z., Yuan S., Ji L., Zhao T., Gao Y., Wang H. Nitrogen and oxygen co-doped graphite felt gas diffusion electrodes for efficient hydrogen peroxide electrosynthesis // Mol. Catal. 2023. V. 541. ID 113076. https://doi.org/10.1016/j.mcat.2023.113076
  60. [56] Ri K., Pak S., Sun D., Zhong Q., Yang S., Sin S., Wu L., Sun Y., Cao H., Han C., Xu C., Liu Y., He H., Li S., Sun C. Boron-doped rGO electrocatalyst for high effective generation of hydrogen peroxide: Mechanism and effect of oxygen-enriched air // Appl. Catal. B: Environmental. 2024. V. 343. ID 123471. https://doi.org/10.1016/j.apcatb.2023.123471
  61. [57] Cui L., Chen B., Zhang L., He C., Shu C., Kang H., Qiu J., Jing W., Ostrikov K. K., Zhang Z. An anti-electrowetting carbon film electrode with self-sustained aeration for industrial H2O2 electrosynthesis // Energy Environ. Sci. 2024. V. 17. N 2. P. 655–667. https://doi.org/10.1039/D3EE03223J
  62. [58] Hübner J. L., Ruland G., Pietschmann F., Brejwo Z., Paul B., Strasser P. Electrolyte design for high hydrogen peroxide production rates utilizing commercial carbon gas diffusion electrodes // Chem. 2025. V. 11. N 4. ID 102363. https://doi.org/10.1016/j.chempr.2024.11.001
  63. [59] Wang L., Liu S., Meng J., Song M., Jiao M., Jiang H., Chen Y. Electrocatalytic lignin valorization via enhanced H2O2 generation using a MWNCT-modified gas diffusion electrode // ChemPlusChem. 2025. V. 90. N 5. ID e202400769. https://doi.org/10.1002/cplu.202400769
  64. [60] Zhang S., Mou Y., Zhou Y., Tong H., Gong H., He Y., Shen W., Li J. Hydrogen peroxide in-situ electrosynthesis using micropore-adjusted gas diffusion electrode and application in wastewater // J. Environ. Chem. Eng. 2025. V. 13. N 1. ID 115059. https://doi.org/10.1016/j.jece.2024.115059
  65. [61] Fu X., Niemann V. A., Zhou Y., Li S., Zhang K., Pedersen J. B., Saccoccio M., Andersen S. Z., Enemark-Rasmussen K., Benedek P., Xu A., Deissler N. H., Mygind J. B. V., Nielander A. C., Kibsgaard J., Vesborg P. C. K., Nørskov J. K., Jaramillo T. F., Chorkendorff I. Calcium-mediated nitrogen reduction for electrochemical ammonia synthesis // Nat. Mater. 2024. V. 23. N 1. P. 101–107. https://doi.org/10.1038/s41563-023-01702-1
  66. [62] Fu X., Pedersen J. B., Zhou Y., Saccoccio M., Li S., Sažinas R., Katja L., Andersen S. Z., Xu A., Deissler N. H., Mygind J. B. V., Wie C., Kibsgaard J., Vesborg P. C. K., Nørskov J. K., Chorkendorff I. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation // Science. 2023. V. 379. N 6633. P. 707–712. https://doi.org/10.1126/science.adf4403
  67. [63] He Y., Wang M., Liu S., Zhang L., Cheng Q., Yan C., Qian T. A superaerophilic gas diffusion electrode enabling facilitated nitrogen feeding through hierarchical micro/nano channels for efficient ambient synthesis of ammonia // Chem. Eng. J. 2023. V. 454. ID 140106. https://doi.org/10.1016/j.cej.2022.140106
  68. [64] Xiao L., Mou S., Dai W., Yang W., Cheng Q., Liu S., Dong F. Identification of Cu(111) as superior active sites for electrocatalytic NO reduction to NH3 with high single-pass conversion efficiency // Angew. Chem. Int. Ed. 2024. V. 63. N 11. ID e202319135. https://doi.org/10.1002/anie.202319135
  69. [65] Nwabueze Q. A., Leggett S. Advancements in the application of CO2 capture and utilization technologies — A comprehensive review // Fuels. 2024. V. 5. N 3. P. 508–532. https://doi.org/10.3390/fuels5030028
  70. [66] Fu L., Ren Z., Si W., Ma Q., Huang W., Liao K., Huang Z., Wang Y., Li J., Xu P. Research progress on CO2 capture and utilization technology // J. CO2 Util. 2022. V. 66. ID 102260. https://doi.org/10.1016/j.jcou.2022.102260
  71. [67] Moinee A. A., Rownaghi A. A., Rezaei F. Process development and techno-economic analysis for combined and separated CO2 capture-electrochemical utilization // Chem. Eng. J. 2024. V. 499. ID 155909. https://doi.org/10.1016/j.cej.2024.155909
  72. [68] Zhang W., Yang Y., Li Y., Li F., Luo M. Recent progress on integrated CO2 capture and electrochemical upgrading // Mater. Today Catal. 2023. V. 2. ID 100006. https://doi.org/10.1016/j.mtcata.2023.100006
  73. [69] Wen G., Ren B., Liu Y., Dong S., Luo D., Jin M., Wang X., Yu A., Chen Z. Bridging trans-scale electrode engineering for mass CO2 electrolysis // JACS Au. 2023. V. 3. N 8. P. 2046–2061. https://doi.org/10.1021/jacsau.3c00174
  74. [70] Burungale V. V., Gaikwad M. A., Bae H., Mane P., Heo J., Seong C., Kim J. H., Oh J., Ha J. S. Advances in gas diffusion electrode technology for electrochemical CO2 reduction: Innovations, challenges, and future directions // Mater. Sci. Eng. R: Reports. 2025. V. 166. ID 101064. https://doi.org/10.1016/j.mser.2025.101064

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025