A Model of Financial Pyramid with Quasi-Rational Participants
- Autores: Kukushkin N.S.1,2
- 
							Afiliações: 
							- Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,” Russian Academy of Sciences
- Moscow Institute of Physics and Technology
 
- Edição: Volume 63, Nº 3 (2023)
- Páginas: 380-389
- Seção: Optimal control
- URL: https://cardiosomatics.ru/0044-4669/article/view/664876
- DOI: https://doi.org/10.31857/S0044466923030080
- EDN: https://elibrary.ru/DYIZFX
- ID: 664876
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A model of a financial pyramid is proposed in which each participant makes a decision about entering and exiting the pyramid based on the maximin principle using his (or her) ideas about the characteristics of other participants. If the pyramid organizers are able to carry out the whole process quickly enough (so that the payoffs to agents who participated in the pyramid and left it in time do not matter too much), then exactly those agents who overestimated the share of losers in the total mass of agents will lose.
Palavras-chave
Sobre autores
N. Kukushkin
Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,” Russian Academy of Sciences; Moscow Institute of Physics and Technology
							Autor responsável pela correspondência
							Email: ququns@inbox.ru
				                					                																			                												                								119333, Moscow, Russia; 141700, Dolgoprudnyi, Moscow oblast, Russia						
Bibliografia
- Barlevy G., Veronesi P. Rational panics and stock market crashes // J. Econom. Theory. 2003. V. 110. P. 234–263.
- Blanchard O.J. Speculative bubbles, crashes and rational expectations // Economics Lett. 1979. V. 3. P. 387–389.
- Boldrin M., Levine D.K. Growth cycles and market crashes // J. Econom. Theory. 2001. V. 96. P. 13–39.
- Epstein L.G., Wang T. Uncertainty, risk-neutral measures and security price booms and crashes // J. Econom. Theory. 1995. V. 67. P. 40–82.
- Kocherlakota N. Injecting rational bubbles // J. Econom. Theory. 2008. V. 142. P. 218–232.
- Liu F., Conlon J.R. The simplest rational greater-fool bubble model // J. Econom. Theory. 2018. V. 175. P. 38–57.
- Miao J. Introduction to economic theory of bubbles // J. Math. Economics. 2014. V. 53. P. 130–136.
- Miao J. Introduction to economic theory of bubbles II // J. Math. Economics. 2016. V. 65. P. 139–140.
- Milgrom P., Stokey N. Information, trade, and common knowledge // J. Econom. Theory. 1982. V. 26. P. 17–27.
- Moinas S., Pouget S. The bubble game: An experimental study of speculation // Econometrica. 2013. V. 81. P. 1507–1539.
- Schiller R.J. Irrational Exuberance. Princeton: Princeton Univer. Press, 2000.
- Tirole J. On the possibility of speculation under rational expectations // Econometrica. 1982. V. 50. P. 1163–1181.
- Chancellor E. Devil Take the Hindmost. N.Y.: Plume, 1999.
- Гермейер Ю.Б. Введение в теорию исследования операций. М.: Наука, 1971.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
