ON THE STABILITY OF A STABILIZING CORRECTION SCHEME WITH CENTRAL DIFFERENCES FOR SPATIAL VARIABLES IN THE 3D TRANSPORT EQUATION
- Authors: Zhukov V.P1
- 
							Affiliations: 
							- Federal Research Center for Information and Computational Technologies
 
- Issue: Vol 64, No 5 (2024)
- Pages: 835-841
- Section: Mathematical physics
- URL: https://cardiosomatics.ru/0044-4669/article/view/665085
- DOI: https://doi.org/10.31857/S0044466924050118
- EDN: https://elibrary.ru/YCZKUW
- ID: 665085
Cite item
Abstract
It is generally accepted that the stabilizing correction scheme with central differences for spatial variables in the 3D transport equation is conditionally stable. The work shows that, strictly speaking, this scheme is absolutely unstable. However, the region of unstable harmonics in the wave vector space and the magnitude of their increments rapidly approach zero as the Courant parameter tends to zero, allowing successful use of this scheme. Therefore, it is more accurate to refer to this scheme as practically conditionally stable.
			                About the authors
V. P Zhukov
Federal Research Center for Information and Computational Technologies
														Email: zukov@ict.nsc.ru
				                					                																			                												                								Novosibirsk, Russia						
References
- Ковеня В. М., Тарнавский Г. А., Яненко Н. Н., Неявная разностная схема для численного решения пространственных уравнений газовой динамики //Ж. вычисл. матем. иматем. физ. 1980. Т. 20. № 6. С. 1465—1482.
- Ковеня В. М., Яненко Н. Н. Метод расщепления в задачах газовой динамики. Новосибирск: Наука, 1981.
- Яненко Н. Н. Метод дробных шагов решения многомерных задач математической физики. Новосибирск: Наука, Сибирское отделение, 1967.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					