Study of Secular Perturbations in the Restricted Three-Body Problem of Variable Masses Using Computer Algebra
- Autores: Ibraimova A.T.1,2, Minglibayev M.D.1,2, Prokopenya A.N.3
- 
							Afiliações: 
							- Al-Farabi Kazakh National University
- Fesenkov Astrophysical Institute
- Warsaw University of Life Sciences
 
- Edição: Volume 63, Nº 1 (2023)
- Páginas: 154-164
- Seção: Mathematical physics
- URL: https://cardiosomatics.ru/0044-4669/article/view/664912
- DOI: https://doi.org/10.31857/S004446692301009X
- EDN: https://elibrary.ru/LMGDHY
- ID: 664912
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A nonstationary restricted three-body problem for variable masses is considered taking into account the reactive forces arising due to anisotropic variation of masses of the bodies. It is assumed that the bodies are spherically symmetric and interact in accordance with Newton’s law of gravitation. On the basis of the equations of motion of the bodies in the relative system of coordinates, differential equations of aperiodic motion along quasi-conic sections in terms of osculating elements are derived. Equations determining the secular perturbations of the orbital elements are derived in the case of small eccentricities and inclinations of orbits. All symbolic computations are performed using Wolfram Mathematica.
Palavras-chave
Sobre autores
A. Ibraimova
Al-Farabi Kazakh National University; Fesenkov Astrophysical Institute
														Email: ibraimova@aphi.kz
				                					                																			                												                								050040, Almaty, Kazakhstan;  050020, Almaty, Kazakhstan						
M. Minglibayev
Al-Farabi Kazakh National University; Fesenkov Astrophysical Institute
														Email: minglibayev@gmail.com
				                					                																			                												                								050040, Almaty, Kazakhstan;  050020, Almaty, Kazakhstan						
A. Prokopenya
Warsaw University of Life Sciences
							Autor responsável pela correspondência
							Email: alexander_prokopenya@sggw.edu.pl
				                					                																			                												                								02-776, Warsaw, Poland						
Bibliografia
- Omarov T.B. (Ed.) Non-Stationary Dynamical Problems in Astronomy. N.Y.: Nova Sci. Publ., 2002.
- Bekov A.A., Omarov T.B. The theory of orbits in non-stationary stellar systems // Astron. Astrophys. Transact. 2013. V. 22. № 2. P. 145–153.
- Черепащук А.М. Тесные двойные звезды. Ч. II. М.: Физматлит, 2013. 572 с.
- Eggleton P. Evolutionary processes in binary and multiple stars. Cambridge Univ. Press, 2006. 332 p.
- Luk’yanov L.G. Dynamical evolution of stellar orbits in close binary systems with conservative mass transfer // Astron. Rep. 2008. V. 52. № 8. P. 680–693.
- Минглибаев М.Дж. Динамика гравитирующих тел с переменными массами и размерами. LAMBERT Acad. Publ., 2012. 229 с.
- Прокопеня А.Н., Минглибаев М.Дж., Маемерова Г.М. Символьные вычисления в исследованиях проблемы трех тел с переменными массами // Программирование. 2014. Т. 40. № 2. С. 51–59.
- Minglibayev M.Zh., Mayemerova G.M. Evolution of the orbital-plane orientations in the two-protoplanet three-body problem with variable masses // Astron. Rep. 2014. V. 58. № 9. P. 667–677.
- Minglibayev M.Zh., Prokopenya A.N., Mayemerova G.M., Imanova Zh.U. Three-body problem with variable masses that change anisotropically at different rates // Math. Comp. Sci. 2017. V. 11. № 3–4. P. 383–391.
- Прокопеня А.Н., Минглибаев М.Дж., Шомшекова С.А. Применение компьютерной алгебры в исследованиях двухпланетной задачи трех тел с переменными массами // Программирование. 2019. Т. 45. № 2. С. 58–65.
- Minglibayev M., Prokopenya A., Shomshekova S. Computing perturbations in the two-planetary three-body problem with masses varying non-isotropically at different rates // Math. Comp. Sci. 2020. V. 14. № 2. P. 241–251.
- Wolfram S. An Elementary Introduction to the Wolfram Language. Champaign, IL: Wolfram Media, 2015. 324 p.
- Прокопеня А.Н. Решение физических задач с использованием системы Mathematica. Брест: БГТУ, 2005. 260 с.
- Minglibayev M.Zh., Omarov Ch.T., Ibraimova A.T. New forms of the perturbed motion equation // Rep. Nation. Acad. Sci. Republ. Kazakhstan. 2020. V. 2(330). P. 5–13.
- Мещерский И.В. Работы по механике тел переменной массы. М.: Гос. изд-во тех.-теор. лит-ры, 1952. 281 с.
- Дубошин Г.Н. Небесная механика. Основные задачи и методы. М.: Наука, 1975. 799 с.
- Рой А.Э. Движение по орбитам. М.: Мир, 1981. 544 с.
- Себехей В. Теория орбит: ограниченная задача трех тел. М.: Наука, 1982. 656 с.
- Brouwer D., Clemence G.M. Methods of Celestial Mechanics. N.Y.: Acad. Press, 1961. 601 p.
- Шарлье К. Небесная механика. М.: Наука, 1966. 628 с.
- Murray C.D., Dermott S.F. Solar system dynamics. Cambridge University Press, New York, 1999. 592 p.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
