СУЩЕСТВОВАНИЕ РЕШЕНИЙ НЕСАМОСОПРЯЖЕННОЙ ЗАДАЧИ ШТУРМА–ЛИУВИЛЛЯ С РАЗРЫВНОЙ НЕЛИНЕЙНОСТЬЮ
- Авторы: Басков О.В.1, Потапов Д.К.1
- 
							Учреждения: 
							- Санкт-Петербургский государственный университет
 
- Выпуск: Том 64, № 6 (2024)
- Страницы: 1008-1015
- Раздел: ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
- URL: https://cardiosomatics.ru/0044-4669/article/view/665063
- DOI: https://doi.org/10.31857/S0044466924060096
- EDN: https://elibrary.ru/XYMHHG
- ID: 665063
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Рассматривается проблема существования решений задачи Штурма–Лиувилля с несамосопря женным дифференциальным оператором и разрывной по фазовой переменной нелинейностью.  Для исследуемой задачи устанавливаются теоремы о существовании нетривиальных (положи тельных и отрицательных) решений при положительных значениях спектрального параметра.  Приводятся примеры, иллюстрирующие полученные теоремы. Библ. 12. Фиг. 8.
			                Об авторах
О. В. Басков
Санкт-Петербургский государственный университетСанкт-Петербург, Россия
Д. К. Потапов
Санкт-Петербургский государственный университет
														Email: d.potapov@spbu.ru
				                					                																			                												                								Санкт-Петербург, Россия						
Список литературы
- Carl S., Heikkila S. On the existence of minimal and maximal solutions of discontinuous functional Sturm– Liouville boundary value problems // J. Inequal. Appl. 2005. N 4. P. 403–412.
- Bonanno G., Bisci G. M. Infinitely many solutions for a boundary value problem with discontinuous nonlinearities // Bound. Value Probl. 2009. Art. ID 670675. 20 p.
- Bonanno G., Buccellato S. M. Two point boundary value problems for the Sturm–Liouville equation with highly discontinuous nonlinearities // Taiwanese J. Math. 2010. V. 14. N 5. P. 2059–2072.
- Потапов Д. К. Задача Штурма–Лиувилля с разрывной нелинейностью // Дифференц. уравнения. 2014. Т. 50. № 9. С. 1284–1286.
- Потапов Д. К. Существование решений, оценки дифференциального оператора и “разделяющее” множество в краевой задаче для дифференциального уравнения второго порядка с разрывной нелинейностью // Дифференц. уравнения. 2015. Т. 51. № 7. С. 970–974.
- Bonanno G., D’Agui G., Winkert P. Sturm–Liouville equations involving discontinuous nonlinearities // Minimax Theory Appl. 2016. V. 1. N 1. P. 125–143.
- Павленко В. Н., Постникова Е. Ю. Задача Штурма–Лиувилля для уравнения с разрывной нелинейностью // Челяб. физ.-матем. журн. 2019. Т. 4. Вып. 2. С. 142–154.
- Басков О. В., Потапов Д. К. Управление и возмущение в задаче Штурма–Лиувилля с разрывной нелинейностью // Вестн. С.-Петерб. ун-та. Прикл. матем. Информ. Проц. управ. 2023. Т. 19. Вып. 2. С. 275–282.
- Потапов Д. К. Аппроксимация задачи Штурма–Лиувилля с разрывной нелинейностью // Дифференц. уравнения. 2023. Т. 59. № 9. С. 1191–1198.
- Басков О. В., Потапов Д. К. О решениях краевой задачи для одного дифференциального уравнения второго порядка с параметром и разрывной правой частью // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 8. С. 1296–1308.
- Павленко В. Н., Потапов Д. К. Существование решений невариационной эллиптической краевой задачи с параметром и разрывной нелинейностью // Матем. тр. 2016. Т. 19. № 1. С. 91–105.
- Павленко В. Н., Потапов Д. К. Существование полуправильных решений эллиптических спектральных задач с разрывными нелинейностями // Матем. сб. 2015. Т. 206. № 9. С. 121–138.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

