Modern Methods of Fluorescence Nanoscopy in Biology
- Autores: Solovyeva D.O.1, Altunina A.V.1,2, Tretyak M.V.1, Mochalov K.E.1, Oleinikov V.A.1,3
- 
							Afiliações: 
							- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
- Moscow Institute of Physics and Technology (National Research University)
- National Research Nuclear University “MEPhI”
 
- Edição: Volume 50, Nº 4 (2024)
- Páginas: 462-484
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-3423/article/view/670841
- DOI: https://doi.org/10.31857/S0132342324040077
- EDN: https://elibrary.ru/MWYVNA
- ID: 670841
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Optical microscopy has undergone significant changes in recent decades due to the breaking of the diffraction limit of optical resolution and the development of high-resolution imaging techniques, which are collectively known as fluorescence nanoscopy. These techniques allow researchers to observe biological structures and processes at a nanoscale level of detail, revealing previously hidden features and aiding in answering fundamental biological questions. Among the advanced methods of fluorescent nanoscopy are: STED (Stimulated Emission Depletion Microscopy), STORM (STochastic Optical Reconstruction Microscopy), PALM (Photo-activated Localization Microscopy), TIRF (Total Internal Reflection Fluorescence), SIM (Structured Illumination Microscopy), MINFLUX (Minimal Photon Fluxes), PAINT (Points Accumulation for Imaging in Nanoscale Topography) и RESOLFT (REversible Saturable Optical Fluorescence Transitions) and others. In addition, most of these methods make it possible to obtain volumetric (3D) images of the objects under study. In this review, we will look at the principles of these methods, their advantages and disadvantages, and their application in biological researches.
Texto integral
 
												
	                        Sobre autores
D. Solovyeva
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
							Autor responsável pela correspondência
							Email: d.solovieva@mail.ru
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
A. Altunina
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Moscow Institute of Physics and Technology (National Research University)
														Email: d.solovieva@mail.ru
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997; Institutskiy per. 9, Dolgoprudny, 141701						
M. Tretyak
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
														Email: d.solovieva@mail.ru
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
K. Mochalov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
														Email: d.solovieva@mail.ru
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
V. Oleinikov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; National Research Nuclear University “MEPhI”
														Email: d.solovieva@mail.ru
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997; Kashirskoye sh. 31, Moscow, 115409						
Bibliografia
- Abbe E. // Archiv für mikroskopische Anatomie. 1873. V. 9. P. 413–468. https://doi.org/10.1007/BF02956173
- Minsky M. // Scanning. 1988. V. 10. P. 128–138. https://doi.org/10.1002/sca.4950100403
- Kaiser W., Garrett C. // Phys. Rev. Lett. 1961. V. 7. P. 229–231. https://doi.org/10.1103/PhysRevLett.7.229
- Hell S.W., Stelzer E.H.K., Lindek S., Cremer C. // Opt. Lett. 1994. V. 19. P. 222–224. https://doi.org/10.1364/OL.19.000222
- Bahlmann K., Jakobs S., Hell S.W. // Ultramicroscopy. 2001. V. 87. P. 155–164. https://doi.org/10.1016/S0304-3991(00)00092-9
- Khater I.M., Nabi I.R., Hamarneh G. // Patterns. 2020. V. 1. P. 100038. https://doi.org/10.1016/j.patter.2020.100038
- Gong J., Jin Z., Chen H., He J., Zhang Y., Yang X. // Adv. Drug Deliv. Rev. 2023. V. 196. P. 114791. https://doi.org/10.1016/j.addr.2023.114791
- Werner C., Sauer M., Geis C. // Chem. Rev. 2021. V. 121. P. 11971–12015. https://doi.org/10.1021/acs.chemrev.0c01174
- Jacquemet G., Carisey A.F., Hamidi H., Henriques R., Leterrier C. // J. Cell Sci. 2020. V. 133. P. jcs240713. https://doi.org/10.1242/jcs.240713
- Vicidomini G., Bianchini P., Diaspro A. // Nat. Methods. 2018. V. 15. P. 173–182. https://doi.org/10.1038/nmeth.4593
- Hell S.W., Wichmann J. // Opt. Lett. 1994. V. 19. P. 780–782. https://doi.org/10.1364/ol.19.000780
- Hell S.W., Kroug M. // Appl. Phys. B. 1995. V. 60. P. 495–497. https://doi.org/10.1007/BF01081333
- Mochalov K.E., Chistyakov A.A., Solovyeva D.O., Mezin A.V., Oleinikov V.A., Vaskan I.S., Molinari M., Agapov I.I., Nabiev I., Efimov A.E. // Ultramicroscopy. 2017. V. 182. P. 118–123. https://doi.org/10.1016/j.ultramic.2017.06.022
- Heine J., Wurm C.A., Keller-Findeisen J., Schönle A., Harke B., Reuss M., Winter F.R., Donnert G. // Rev. Sci. Instrum. 2018. V. 89. P. 053701. https://doi.org/10.1063/1.5020249
- Blom H., Widengren J. // Curr. Opin. Chem. Biol. 2014. V. 20. P. 127–133. https://doi.org/10.1016/j.cbpa.2014.06.004
- Berning S., Willig K.I., Steffens H., Dibaj P., Hell S.W. // Science. 2012. V. 335. P. 551–552. https://doi.org/10.1126/science.1215369
- Masch J.-M., Steffens H., Fischer J., Engelhardt J., Hubrich J., Keller-Findeisen J., D’Este E., Urban N.T., Grant S.G.N., Sahl S.J., Kamin D., Hell S.W. // Proc. Natl. Acad. Sci. USA. 2018. V. 115. P. E8047–E8056. https://doi.org/10.1073/pnas.1807104115
- Pfeiffer T., Poll S., Bancelin S., Angibaud J., Inavalli V.K., Keppler K., Mittag M., Fuhrmann M., Nägerl U.V. // Elife. 2018. V. 7. P. 1–17. https://doi.org/10.7554/eLife.34700
- Steffens H., Wegner W., Willig K.I. // Methods. 2020. V. 174. P. 42–48. https://doi.org/10.1016/j.ymeth.2019.05.020
- Calovi S., Soria F.N., Tønnesen J. // Neurobiol. Dis. 2021. V. 156. P. 105420. https://doi.org/10.1016/j.nbd.2021.105420
- Katsube S., Koganezawa N., Hanamura K., Cuthill K.J., Tarabykin V., Ambrozkiewicz M.C., Kawabe H. // Neurosci. Lett. 2023. V. 797. P. 137059. https://doi.org/10.1016/j.neulet.2023.137059
- Scharrig E., Sanmillan M.L., Giraudo C.G. // Methods Cell Biol. 2023. https://doi.org/10.1016/bs.mcb.2023.01.018
- Carravilla P., Dasgupta A., Zhurgenbayeva G., Danylchuk D.I., Klymchenko A.S., Sezgin E., Eggeling C. // Biophys. Rep. 2021. V. 1. P. 100023. https://doi.org/10.1016/j.bpr.2021.100023
- Spahn C., Grimm J.B., Lavis L.D., Lampe M., Heilemann M. // Nano Lett. 2019. V. 19. P. 500–505. https://doi.org/10.1021/acs.nanolett.8b04385
- Sauer M., Heilemann M. // Chem. Rev. 2017. V. 117. P. 7478–7509. https://doi.org/10.1021/acs.chemrev.6b00667
- Keller J., Schönle A., Hell S.W. // Opt. Express. 2007. V. 15. P. 3361–3371. https://doi.org/10.1364/oe.15.003361
- Rittweger E., Rankin B.R., Westphal V., Hell S.W. // Chem. Phys. Lett. 2007. V. 442. P. 483–487. https://doi.org/10.1016/j.cplett.2007.06.017
- Sharma R., Singh M., Sharma R. // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020. V. 231. P. 117715. https://doi.org/10.1016/j.saa.2019.117715
- Zhang P., Goodwin P.M., Werner J.H. // Opt. Express. 2014. V. 22. P. 12398–12409. https://doi.org/10.1364/OE.22.012398
- Yu W., Ji1 Z., Dong D., Yang X., Xiao Y., Gong Q., Xi P., Shi K. // Laser Photonics Rev. 2016. V. 10. P. 147–152. https://doi.org/10.1002/lpor.201500151
- Frawley A.T., Wycisk V., Xiong Y., Galiani S., Sezgin E., Urbančič I., Jentzsch A.V., Leslie K.G., Eggeling C., Anderson H.L. // Chem. Sci. 2020. V. 11. P. 8955–8960. https://doi.org/10.1039/D0SC02447C
- Damenti M., Coceano G., Pennacchietti F., Bodén A., Testa I. // Neurobiol. Dis. 2021. V. 155. P. 105361. https://doi.org/10.1016/j.nbd.2021.105361
- Sahl, S.J., Hell, S.W. // In: High Resolution Imaging in Microscopy and Ophthalmology / Eds. Bille J. Cham: Springer, 2019. P. 3–32. https://doi.org/10.1007/978-3-030-16638-0_1
- Boden A., Pennacchietti F., Coceano G., Damenti M., Ratz M., Testa I. // Nat. Biotechnol. 2021. V. 39. P. 609–618. https://doi.org/10.1038/s41587-020-00779-2
- Willig K.I. // iScience. 2022. V. 25. P. 104961. https://doi.org/10.1016/j.isci.2022.104961
- Rust M.J., Bates M., Zhuang X.W. // Nat. Methods. 2006. V. 3. P. 793–795. https://doi.org/10.1038/nmeth929
- Hess S.T., Girirajan T.P.K., Mason M.D. // Biophys. J. 2006. V. 91. V. 4258–4272. https://doi.org/10.1529/biophysj.106.091116
- Kikuchi K., Adair L.D., Lin J., New E.J., Kaur A. // Angew. Chem. Int. Ed. Engl. 2023. V. 62. P. e202204745. https://doi.org/10.1002/anie.202204745
- Li H., Vaughan J.C. // Chem. Rev. 2018. V. 118. P. 9412–9454. https://doi.org/10.1021/acs.chemrev.7b00767
- Huang B., Wang W., Bates M., Zhuang X. // Science. 2008. V. 319. P. 810–813. https://doi.org/10.1126/science.1153529
- Albrecht N.E., Jiang D., Akhanov V., Hobson R., Speer C.M., Robichaux M.A., Samuel M.A. // Cell Rep. Methods. 2022. V. 2. P. 100253. https://doi.org/10.1016/j.crmeth.2022.100253
- Hu F., Zhu D., Dong H., Zhang P., Xing F., Li W., Yan R., Zhou J., Xu K., Pan L., Xu J. // iScience. 2022. V. 25. P. 105514. https://doi.org/10.1016/j.isci.2022.105514
- Kim D., Deerinck T.J., Sigal Y.M., Babcock H.P., Ellisman M.H., Zhuang X. // PLoS One. 2015. V. 10. P. e0124581. https://doi.org/10.1371/journal.pone.0124581
- Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F. // Science. 2006. V. 313. P. 1642–1645. https://doi.org/10.1126/science.1127344
- Shtengel G., Galbraith J.A., Galbraith C.G., Lippincott-Schwartz J., Gillette J.M., Manley S., Sougrat R., Waterman C.M., Kanchanawong P., Davidson M.W., Fetter R.D., Hess H.F. // PNAS. 2009. V. 106. P. 3125–3130. https://doi.org/10.1073/pnas.0813131106
- Shtengel G., Wang Y., Zhang Z., Goh W.I., Hess H.F., Kanchanawong P. // Methods Cell Biol. 2014. V. 123. P. 273–294. https://doi.org/10.1016/B978-0-12-420138-5.00015-X
- Baddeley D., Bewersdorf J. // Annu. Rev. Biochem. 2018. V. 87. P. 965–989. https://doi.org/10.1146/annurev-biochem-060815-014801
- Lemcke H., Skorska A., Lang C.I., Johann L., David R. // Int. J. Mol. Sci. 2020. V. 21. P. 2819. https://doi.org/10.3390/ijms21082819
- Saha I., Saffarian S. // Biophys. J. 2020. V. 119. P. 581–592. https://doi.org/10.1016/j.bpj.2020.06.023
- Chojnacki J., Eggeling C. // Retrovirology. 2018. V. 15. P. 41. https://doi.org/10.1186/s12977-018-0424-3
- Herron J.C., Hu S., Watanabe T., Nogueira A.T., Liu B., Kern M.E., Aaron J., Taylor A., Pablo M., Chew T.L., Elston T.C., Hahn K.M. // Nat. Commun. 2022. V. 13. P. 4363. https://doi.org/10.1038/s41467-022-32038-0
- Parteka-Tojek Z., Zhu J.J., Lee B., Jodkowska K., Wang P., Aaron J., Chew T.L., Banecki K., Plewczynski D., Ruan Y. // Sci. Rep. 2022. V. 12. P. 8582. https://doi.org/10.1038/s41598-022-12568-9
- Trzaskoma P., Ruszczycki B., Lee B., Pels K.K., Krawczyk K., Bokota G., Szczepankiewicz A.A., Aaron J., Walczak A., Śliwińska M.A., Magalska A., Kadlof M., Wolny A., Parteka Z., Arabasz S., KissArabasz M., Plewczyński D., Ruan Y., Wilczyński G.M. // Nat. Commun. 2020. V. 11. P. 2120. https://doi.org/10.1038/s41467-020-15987-2
- Sharonov A., Hochstrasser R.M. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 18911–18916. https://doi.org/10.1073/pnas.0609643104
- Schnitzbauer J., Strauss M., Schlichthaerle T., Schueder F., Jungmann R. // Nat. Protoc. 2017. V. 12. P. 1198–1228. https://doi.org/10.1038/nprot.2017.024
- Jungmann R., Avendano M.S., Woehrstein J.B., Dai M., Shih W.M., Yin P. // Nat. Methods. 2014. V. 11. P. 313–318. https://doi.org/10.1038/nmeth.2835
- Niederauer C., Nguyen C., Wang-Henderson M., Stein J., Strauss S., Cumberworth A., Stehr F., Jungmann R., Schwille P., Ganzinger K.A. // Nat. Commun. 2023. V. 14. P. 4345. https://doi.org/10.1038/s41467-023-40065-8
- Brockman J.M., Su H., Blanchard A.T., Duan Y., Meyer T., Quach M.E., Glazier R., Bazrafshan A., Bender R.L., Kellner A.V., Ogasawara H., Ma R., Schueder F., Petrich B.G., Jungmann R., Li R., Mattheyses A.L., Ke Y., Salaita K. // Nat. Methods. 2020. V. 17. P. 1018–1024. https://doi.org/10.1038/s41592-020-0929-2
- Tholen M.M.E., Tas R.P., Wang Y., Albertazzi L. // Chem. Commun. (Camb). 2023. V. 59. P. 8332– 8342. https://doi.org/10.1039/d3cc00757j
- Chang Y., Kim D.H., Zhou K., Jeong M.G., Park S., Kwon Y., Hong T.M., Noh J., Ryu S.H. // Exp. Mol. Med. 2021. V. 53. P. 384–392. https://doi.org/10.1038/s12276-021-00572-4
- Riera R., Hogervorst T.P., Doelman W., Ni Y., Pujals S., Bolli E., Codée J.D.C., van Kasteren S.I., Albertazzi L. // Nat. Chem. Biol. 2021. V. 17. P. 1281–1288. https://doi.org/10.1038/s41589-021-00896-2
- Farrell M.V., Nunez A.C., Yang Z., Pérez-Ferreros P., Gaus K., Goyette J. // Sci. Signal. 2022. V. 15. P. eabg9782. https://doi.org/10.1126/scisignal.abg9782
- Oi C., Gidden Z., Holyoake L., Kantelberg O., Mochrie S., Horrocks M.H., Regan L. // Commun. Biol. 2020. V. 3. P. 458. https://doi.org/10.1038/s42003-020-01188-6
- Gwosch K.C., Pape J.K., Balzarotti F., Hoess P., Ellenberg J., Ries J., Hell S.W. // Nat. Methods. 2020. V. 17. P. 217–224. https://doi.org/10.1038/s41592-019-0688-0
- Balzarotti F., Eilers Y., Gwosch K.C., Gynnå A.H., Westphal V., Stefani F.D., Elf J., Hell S.W. // Science. 2017. V. 355. P. 606–612. https://doi.org/10.1126/science.aak9913
- Prakash K., Curd A.P. // Nat. Methods. 2023. V. 20. P. 48–51. https://doi.org/10.1038/s41592-022-01694-x
- Gwosch K.C., Balzarotti F., Pape J.K., Hoess P., Ellenberg J., Ries J., Matti U., Schmidt R., Sahl S.J., Hell S.W. // Nat. Methods. 2023. V. 20. P. 52–54. https://doi.org/10.1038/s41592-022-01695-w
- Wolff J.O., Scheiderer L., Engelhardt T., Engelhardt J., Matthias J., Hell S.W. // Science. 2023. V. 379. P. 1004–1010. https://doi.org/10.1126/science.ade2650
- Deguchi T., Iwanski M.K., Schentarra E.M., Heidebrecht C., Schmidt L., Heck J., Weihs T., Schnorrenberg S., Hoess P., Liu S., Chevyreva V., Noh K.M., Kapitein L.C., Ries J. // Science. 2023. V. 379. P. 1010–1015. https://doi.org/10.1126/science.ade2676
- Ostersehlt L.M., Jans D.C., Wittek A., KellerFindeisen J., Inamdar K., Sahl S.J., Hell S.W., Jakobs S. // Nat. Methods. 2022. V. 19. P. 1072–1075. https://doi.org/10.1038/s41592-022-01577-1
- Mulhall E.M., Gharpure A., Lee R.M., Dubin A.E., Aaron J.S., Marshall K.L., Spencer K.R., Reiche M.A., Henderson S.C., Chew T.L., Patapoutian A. // Nature. 2023. V. 620. P. 1117–1125. https://doi.org/10.1038/s41586-023-06427-4.
- Carsten A., Rudolph M., Weihs T., Schmidt R., Jansen I., Wurm C.A., Diepold A., Failla A.V., Wolters M., Aepfelbacher M. // Methods Appl. Fluoresc. 2022. V. 11. https://doi.org/10.1088/2050-6120/aca880
- Pape J.K., Stephan T., Balzarotti F., Büchner R., Lange F., Riedel D., Jakobs S., Hell S.W. // Proc. Natl. Acad. Sci. USA. 2020. V. 117. P. 20607–20614. https://doi.org/10.1073/pnas.2009364117
- Gustafsson M.G.L. // J. Microsc. 2000. V. 198. P. 82–87. https://doi.org/10.1046/j.1365-2818.2000.00710.x
- Gustafsson M.G.L., Shao L., Carlton P.M., Wang C.J.R., Golubovskaya I.N., Cande W.Z, Agard D.A., Sedat J.W. // Biophys. J. 2008. V. 94. P. 4957–4970. https://doi.org/10.1529/biophysj.107.120345
- Manton J.D. // Philos. Trans. A Math. Phys. Eng. Sci. 2022. V. 380. P. 20210109. https://doi.org/10.1098/rsta.2021.0109
- Zhao T., Wang Z., Chen T., Lei M., Yao B., Bianco P.R. // Front. Phys. 2021. V. 9. P. 672555. https://doi.org/10.3389/fphy.2021.672555
- Chen X., Zhong S., Hou Y., Cao R., Wang W., Li D., Dai Q., Kim D., Xi P. // Light Sci. Appl. 2023. V. 12. P. 172. https://doi.org/10.1038/s41377-023-01204-4
- Wang M., Chen J., Wang L., Zheng X., Zhou J., Zeng Y., Qu J., Shao Y., Gao B.Z. // Chemosensors. 2021. V. 9. P. 364. https://doi.org/10.3390/chemosensors9120364
- Hamel V., Guichard P., Fournier M., Guiet R., Fluckiger I., Seitz A., Gonczy P. // Biomed. Opt. Express. 2014. V. 5. P. 3326–3336. https://doi.org/10.1364/BOE.5.003326
- Dake F. // Opt. Rev. 2016. V. 23. P. 587–595. https://doi.org/10.1007/s10043-016-0234-6
- Xue Y., So P.T.C. // Opt. Express. 2018. V. 26. P. 20920– 20928. https://doi.org/10.1364/OE.26.020920
- Fiolka R., Beck M., Stemmer A. // Opt. Lett. 2008. V. 33. P. 1629–1631. https://doi.org/10.1364/OL.33.001629
- Roth J., Mehl J., Rohrbach A. // Biomed. Opt. Express. 2020. V. 11. P. 4008–4026. https://doi.org/10.1364/BOE.391561
- Hinsdale T.A., Stallinga S., Rieger B. // Biomed. Opt. Express. 2021. V. 12. P. 1181–1194. https://doi.org/10.1364/BOE.416546
- Heintzmann R., Huser T. // Chem. Rev. 2017. V. 117. P. 13890–13908. https://doi.org/10.1021/acs.chemrev.7b00218
- Ward E.N., Hecker L., Christensen C.N., Lamb J.R., Lu M., Mascheroni L., Chung C.W., Wang A., Rowlands C.J., Schierle G.S.K., Kaminski C.F. // Nat. Commun. 2022. V. 13. P. 7836. https://doi.org/10.1038/s41467-022-35307-0
- Mennella V. // In: Encyclopedia of Cell Biology (Second Edition) / Eds. Ralph A., Hart B.G.W., Stahl P.D. Academic Press, 2023. P. 105–121. https://doi.org/10.1016/B978-0-12-821618-7.00116-4
- Hong S., Wilton D.K., Stevens B., Richardson D.S. // Methods Mol. Biol. 2017. V. 1538. P. 155–167. https://doi.org/10.1007/978-1-4939-6688-2_12
- Sulkowski M.J., Han T.H., Ott C., Wang Q., Verheyen E.M., Lippincott-Schwartz J., Serpe M. // PLoS Genet. 2016. V. 12. P. e1005810. https://doi.org/10.1371/journal.pgen.1005810
- Badawi Y., Nishimune H. // Neurosci. Lett. 2020. V. 715. P. 134644. https://doi.org/10.1016/j.neulet.2019.134644
- Miao L., Yan C., Chen Y., Zhou W., Zhou X., Qiao Q., Xu Z. // Cell Chem. Biol. 2023. V. 30. P. 248–260. https://doi.org/10.1016/j.chembiol.2023.02.001
- Mudry E., Belkebir K., Girard J., Savatier J., Le Moal E., Nicoletti C., Allain M., Sentenac A. // Nat. Photon. 2012. V. 6. P. 312–315. https://doi.org/10.1038/nphoton.2012.83
- Mangeat T., Labouesse S., Allain M., Negash A., Martin E., Guénolé A., Poincloux R., Estibal C., Bouissou A., Cantaloube S., Vega E., Li T., Rouvière C., Allart S., Keller D., Debarnot V., Wang X.B., Michaux G., Pinot M., Le Borgne R., Tournier S., Suzanne M., Idier J., Sentenac A. // Cell Rep. Methods. 2021. V. 1. P. 100009. https://doi.org/10.1016/j.crmeth.2021.100009
- Labouesse S., Idier J., Sentenac A., Mangeat T., Allain M. // Random Illumination Microscopy from Variance Images / 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, 2021. P. 785–789. https://doi.org/10.23919/Eusipco47968.2020.9287651
- Liu P. // Appl. Opt. 2022. V. 61. P. 2910–2914. https://doi.org/10.1364/AO.452709
- Affannoukoué K., Labouesse S., Maire G., Gallais L., Savatier J., Allain M., Rasedujjaman M., Legoff L., Idier J., Poincloux R., Pelletier F., Leterrier C., Mangeat T., Sentenac A. // Optica. 2023. V. 10. P. 1009–1017. https://doi.org/10.1364/OPTICA.487003
- Axelrod D. // Traffic. 2001. V. 2. P. 764–774. https://doi.org/10.1034/j.1600-0854.2001.21104.x
- Janco M., Dedova I., Bryce N.S., Hardeman E.C., Gunning P.W. // Biophys. Rev. 2020. V. 12. P. 879– 885. https://doi.org/10.1007/s12551-020-00720-6
- Shen H., Huang E., Das T., Xu H., Ellisman M., Liu Z. // Opt. Express. 2014. V. 22. P. 10728–10734. https://doi.org/10.1364/OE.22.010728
- Fish K.N. // Curr. Protoc. Cytom. 2009. V. 12. P. Unit12.18. https://doi.org/10.1002/0471142956.cy1218s50
- McCluskey K., Dekker N.H. // Opt. Commun. 2023. V. 538. P. 129474. https://doi.org/10.1016/j.optcom.2023.129474
- Fan D., Cnossen J., Hung S.-T., Kromm D., Dekker N.H., Verbiest G.J., Smith G.S. // Opt. Commun. 2023. V. 542. P. 129548. https://doi.org/10.1016/j.optcom.2023.129548
- Soubies E., Radwanska A., Grall D., Blanc-Féraud L., Van Obberghen-Schilling E., Schaub S. // Sci. Rep. 2019. V. 9. P. 1926. https://doi.org/10.1038/s41598-018-36119-3
- Jung Y., Riven I., Feigelson S.W., Kartvelishvily E., Tohya K., Miyasaka M., Alon R., Haran G. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. E5916–E5924. https://doi.org/10.1073/pnas.1605399113
- Szalai A.M., Siarry B., Lukin J., Williamson D.J., Unsain N., Cáceres A., Pilo-Pais M., Acuna G., Refojo D., Owen D.M., Simoncelli S., Stefani F.D. // Nat. Commun. 2021. V. 12. P. 517. https://doi.org/10.1038/s41467-020-20863-0
- Young L.J., Ströhl F., Kaminski C.F.A. // J. Vis. Exp. 2016. V. 111. P. e53988. https://doi.org/10.3791/53988
- Opstad I.S., Ströhl F., Fantham M., Hockings C., Vanderpoorten O., van Tartwijk F.W., Lin J.Q., Tinguely J.-C., Dullo F.T., Kaminski-Schierle G.S., Ahluwalia B.S., Kaminski C.F. // J. Biophotonics. 2020. V. 13. P. e201960222. https://doi.org/10.1002/jbio.201960222
- Villegas-Hernández L.E., Dubey V., Nystad M., Tinguely J.-C., Coucheron D.A., Dullo F.T., Priyadarshi A., Acuña S., Ahmad A., Mateos J.M., Barmettler G., Ziegler U., Birgisdottir Å.B., Karlsson Hovd A.-M., Fenton K.A., Acharya G., Agarwal K., Ahluwalia B.S. // Light Sci. Appl. 2022. V. 11. P. 43. https://doi.org/10.1038/s41377-022-00731-w
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 










