Comparison of methods for rapid determination of cholesterol concentration in human sperm membrane in clinical laboratory practice
- Autores: Mironova A.G.1,2, Afanasyeva S.I.3, Sybachin A.V.4, Spiridonov V.V.4, Bolshakov M.A.5, Simonenko E.Y.3
- 
							Afiliações: 
							- Human Reproduction Clinic “Altravita” (LLC “ECO CENTER”)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Lomonosov Moscow State University, Faculty of Physics, Department of Biophysics
- Lomonosov Moscow State University, Faculty of Chemistry, Department of High Molecular Compounds
- FSBI “Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”
 
- Edição: Volume 51, Nº 1 (2025)
- Páginas: 43-50
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-3423/article/view/683095
- DOI: https://doi.org/10.31857/S0132342325010047
- EDN: https://elibrary.ru/LZVQOE
- ID: 683095
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
This study proposes a rapid method for the determination of cholesterol in human sperm membranes suitable for use in the clinical laboratory. Four physicochemical methods for the quantitative measurement of cholesterol were selected for comparison: the enzymatic cholesterol assay, the Liberman–Burkhardt method, the infrared spectroscopy and the high-performance liquid chromatography. The following cholesterol concentrations were obtained: 1.0 ± 0.3, 1.32 ± 0.15, 5.1 ± 1.8, and 1.53 ± 0.18 nmol/106 cells, respectively. The following criteria of the applicability of the method were chosen: the amount of material to be analyzed, determined by the number of spermatozoa in the seminal fluid of a single ejaculate of a patient, the number of sample preparation steps that account for the systematic error of the analysis, and the total time of the analysis. The infrared spectroscopy method requires at least 20 mg of cellular sample, which is unrealizable for estimating cholesterol in sperm membranes of a single patient. The Liberman–Burkhardt and high-performance liquid chromatography methods require multi-step sample preparation and the use of aggressive volatile reagents. In turn, the enzymatic assay is optimal for the considered criteria, it allows rapid analysis of cholesterol in the sperm membrane of a single patient, and is suitable for use within the in vitro fertilization laboratory.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Mironova
Human Reproduction Clinic “Altravita” (LLC “ECO CENTER”); N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: agm90@mail.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
S. Afanasyeva
Lomonosov Moscow State University, Faculty of Physics, Department of Biophysics
														Email: agm90@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Sybachin
Lomonosov Moscow State University, Faculty of Chemistry, Department of High Molecular Compounds
														Email: agm90@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
V. Spiridonov
Lomonosov Moscow State University, Faculty of Chemistry, Department of High Molecular Compounds
														Email: agm90@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
M. Bolshakov
FSBI “Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”
														Email: agm90@mail.ru
				                					                																			                												                	Rússia, 							Pushchino						
E. Simonenko
Lomonosov Moscow State University, Faculty of Physics, Department of Biophysics
														Email: agm90@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Marquardt D., Kučerka N., Wassall S.R., Harroun T.A., Katsaras J. // Chem. Phys. Lipids. 2016. V. 199. P. 17–25. https://doi.org/10.1016/j.chemphyslip.2016.04.001
- Subczynski W.K., Pasenkiewicz-Gierula M., Widomska J., Mainali L., Raguz M. // Cell Biochem. Biophys. 2017. V. 75. P. 369–385. https://doi.org/10.1007/s12013-017-0792-7
- Leonard A., Escrive C., Laguerre M., Pebay-Peyroula E., Neri W., Pott T., Katsaras J., Dufourc E.J. // Langmuir. 2001. V. 17. P. 2019–2030. https://doi.org/10.1021/la001382p
- Kessel A., Ben-Tal N., May S. // Biophys. J. 2001. V. 81. P. 643–658. https://doi.org/10.1016/s0006-3495(01)75729-3
- Harroun T.A., Katsaras J., Wassall S.R. // Biochemistry. 2006. V. 45. P. 1227–1233. https://doi.org/10.1021/bi0520840
- Harroun T.A., Katsaras J., Wassall S.R. // Biochemistry. 2008. V. 47. P. 7090–7096. https://doi.org/10.1021/bi800123b
- Armstrong C.L., Marquardt D., Dies H., Kučerka N., Yamani Z., Harroun T.A., Katsaras J., Shi A.C., Rheinstädter M.C. // PLoS One. 2013. V. 8. P. e66162. https://doi.org/10.1371/journal.pone.0066162
- Armstrong C.L., Häussler W., Seydel T., Katsaras J., Rheinstädter M.C. // Soft Matter. 2014. V. 10. P. 2600–2611. https://doi.org/10.1039/c3sm51757h
- Armstrong C.L., Barrett M.A., Hiess A., Salditt T., Katsaras J., Shi A.C., Rheinstädter M.C. // Eur. Biophys. J. 2012. V. 41. P. 901–913. https://doi.org/10.1007/s00249-012-0826-4
- Kucerka N., Perlmutter J.D., Pan J., Tristram-Nagle S., Katsaras J., Sachs J.N. // Biophys. J. 2008. V. 95. P. 2792−2805. https://doi.org/10.1529/biophysj.107.122465
- Keller F., Heuer A. // Soft Matter. 2021. V. 17. P. 6098− 6108. https://doi.org/10.1039/d1sm00459j
- Leftin A., Molugu T.R., Job C., Beyer K., Brown M.F. // Biophys. J. 2014. V. 107. P. 2274−2286. https://doi.org/10.1016/j.bpj.2014.07.044
- Rog T., Pasenkiewicz-Gierula M. // FEBS Lett. 2001. V. 502. P. 68–71. https://doi.org/10.1016/s0014-5793(01)02668-0
- Dahley C., Garessus E.D.G., Ebert A., Goss K.U. // Biochim. Biophys. Acta Biomembr. 2022. V. 1864. P. 183953. https://doi.org/10.1016/j.bbamem.2022.183953
- Khatibzadeh N., Gupta S., Farrell B., Brownell W.E., Anvari B. // Soft Matter. 2012. V. 8. P. 8350−8360. https://doi.org/10.1039/c2sm25263e
- Yeagle P.L. // Biochimie. 1991. V. 73. P. 1303–1310. https://doi.org/10.1016/0300-9084(91)90093-g
- Jafurulla M., Chattopadhyay A. // Methods Mol. Biol. 2017. V. 1583. P. 21–39. https://doi.org/10.1007/978-1-4939-6875-6_3
- Grouleff J., Irudayam S.J., Skeby K.K., Schiøtt B. // Biochim. Biophys. Acta. 2015. V. 1848. P. 1783–1795. https://doi.org/10.1016/j.bbamem.2015.03.029
- Epand R.M. // In: The Structure of Biological Membrane / Ed. Yeagle P.L. CRC Press, Boca Raton, 2005. P. 499–509.
- Reichow S.L., Gonen T. // Curr. Opin. Struct. Biol. 2009. V. 19. P. 560–565. https://doi.org/10.1016/j.sbi.2009.07.012
- Tong J., Briggs M.M., McIntosh T.J. // Biophys. J. 2012. V. 103. P. 1899–1908. https://doi.org/10.1016/j.bpj.2012.09.025
- Tong J., Canty J.T., Briggs M.M., McIntosh T.J. // Exp. Eye Res. 2013. V. 113. P. 32–40. https://doi.org/10.1016/j.exer.2013.04.022
- Fantini J., Epand R.M., Barrantes F.J. // Adv. Exp. Med. Biol. 2019. V. 1135. P. 3–25. https://doi.org/10.1007/978-3-030-14265-0_1
- Fantini J., Di Scala C., Baier C.J., Barrantes F.J. // Chem. Phys. Lipids. 2016. V. 199. P. 52–60. https://doi.org/10.1016/j.chemphyslip.2016.02.009
- Hedger G., Koldsø H., Chavent M., Siebold C., Rohatgi R., Sansom M.S.P. // Structure. 2019. V. 27. P. 549–559.e2. https://doi.org/10.1016/j.str.2018.11.003
- George K.S., Wu S. // Toxicol. Appl. Pharmacol. 2012. V. 259. P. 311–319. https://doi.org/10.1016/j.taap.2012.01.007
- Phillips M.C. // J Biol Chem. 2014. V. 289. P. 24020– 24029. https://doi.org/10.1074/jbc.r114.583658
- Yancey P.G., Bortnick A.E., Kellner-Weibel G., de la LleraMoya M., Phillips M.C., Rothblat G.H. // Arterioscler. Thromb Vasc. Biol. 2003. V. 23. P. 712–719. https://doi.org/10.1161/01.atv.0000057572.97137.dd
- Rosenson R.S., Brewer H.B., Jr., Davidson W.S., Fayad Z.A., Fuster V., Goldstein J., Hellerstein M., Jiang X.C., Phillips M.C., Rader D.J., Remaley A.T., Rothblat G.H., Tall A.R., Yvan-Charvet L. // Circulation. 2012. V. 125. P. 1905–1919. https://doi.org/10.1161/circulationaha.111.066589
- Low H., Hoang A., Sviridov D. // J. Vis. Exp. 2012. V. 61. P. e3810. https://doi.org/10.3791/3810
- Sugkraroek P., Kates M., Leader A., Tanphaichitr N. // Fertil. Steril. 1991. V. 55. P. 820–827.
- Force A., Grizard G., Giraud M.N., Motta C., Sion B., Boucher D. // Int. J. Androl. 2001. V. 24. P. 327–334. https://doi.org/10.1046/j.1365-2605.2001.00309.x
- Folch J., Lees M., Sloane-Stanely G.M. // J. Biol. Chem. 1957. V. 226. P. 497–509.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 

