RNA-Interference as a Method for Validation of Pharmacological Targets in Fibrosis Treatment
- 作者: Mikaelyan A.S1, Halimani N.2, Fedorova V.V2, Kotelevtsev Y.V2
-
隶属关系:
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences
- Skolkovo Institute of Science and Technology
- 期: 卷 51, 编号 5 (2025)
- 页面: 758-768
- 栏目: ОБЗОРНЫЕ СТАТЬИ
- URL: https://cardiosomatics.ru/0132-3423/article/view/695705
- DOI: https://doi.org/10.31857/S0132342325050037
- ID: 695705
如何引用文章
详细
RNA interference (RNAi) is an evolutionarily conserved mechanism of gene expression silencing based on the degradation of mRNA by small interfering RNAs (siRNAs). The discovery of this mechanism has not only become a powerful tool for fundamental research in biology, but has also opened up new perspectives for therapeutic medicine. In terms of efficacy and safety, siRNA therapy represents a promising alternative to traditional pharmaceutical approaches. Unlike traditional pharmacological approaches, which are often characterized by systemic toxicity and low specificity, siRNA-based therapy allows for the selective suppression of genes associated with pathologies, providing highly precise action and low toxicity. The use of siRNA to modulate the activity of macrophages, key effectors of innate immunity that play a central role in the development of liver fibrosis, represents particular interest. Due to their high plasticity, macrophages are able to polarize into proinflammatory (M1) or anti-inflammatory (M2) phenotypes, which determines their contribution to the progression or regression of fibrosis. Epigenetic modifications and suppression of key polarization regulators (such as EGR2, IRF5, IRF3, TLR4, HAS2) using siRNA allow targeted changes in their functional state. This review systematizes current data on the role of macrophages in the pathogenesis of liver fibrosis and the prospects for using siRNA therapy to control their activity. Strategies for precision targeting of key molecular targets are discussed, opening up new possibilities for the development of pathogenetically justified treatment methods.
作者简介
A. Mikaelyan
Koltzov Institute of Developmental Biology of Russian Academy of SciencesMoscow, Russia
N. Halimani
Skolkovo Institute of Science and TechnologyMoscow, Russia
V. Fedorova
Skolkovo Institute of Science and TechnologyMoscow, Russia
Y. Kotelevtsev
Skolkovo Institute of Science and Technology
Email: y.kotelevtsev@skoltech.ru
Moscow, Russia
参考
- Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. // Nature. 1998. V. 391. P. 806–811. https://doi.org/10.1038/35888
- Hannon G.J. // Nature. 2002. V. 418. P. 244–251. https://doi.org/10.1038/418244a
- Zhu Y., Zhu L., Wang X., Jin H. // Cell Death Dis. 2022. V. 13. P. 644. https://doi.org/10.1038/s41419-022-05075-2
- Jadhav V., Vaishnaw A., Fitzgerald K., Maier M.A. // Nat Biotechnol. 2024. V. 42. P. 394–405. https://doi.org/10.1038/s41587-023-02105-y
- Egli M., Manoharan M. // Nucleic Acids Res. 2023. V. 51. P. 2529–2573. https://doi.org/10.1093/nar/gkad067
- Whitehead K.A., Dorkin J.R., Vegas A.J., Chang P.H., Veiseh O., Matthews J., Fenton O.S., Zhang Y., Olejnik K.T., Yesilyurt V., Chen D., Barros S., Klebanov B., Novobrantseva T., Langer R., Anderson D.G. // Nat Commun. 2014. V. 5. P. 4277. https://doi.org/10.1038/ncomms5277
- Nair J.K., Willoughby J.L., Chan A., Charisse K., Alam M.R., Wang Q., Hoekstra M., Kandasamy P., Kel’in A.V., Milstein S., Taneja N., O’Shea J., Shaikh S., Zhang L., van der Sluis R.J., Jung M.E., Akinc A., Hutabarat R., Kuchimanchi S., Fitzgerald K., Zimmermann T., van Berkel T.J., Maier M.A., Rajeev K.G., Manoharan M. // J. Am. Chem.Soc. 2014. V. 136. P. 16958–16961. https://doi.org/10.1021/ja505986a
- Hu B., Zhong L., Weng Y., Peng L., Huang Y., Zhao Y., Liang X.J. // Signal Transduct Target Ther. 2020. V. 5. P. 101. https://doi.org/10.1038/s41392-020-0207-x
- Belgrad J., Fakih H.H., Khvorova A. // Nucleic Acid Ther. 2024. V. 34. P. 52–72. https://doi.org/10.1089/nat.2023.0068
- Padda I.S., Mahtani A.U., Patel P., Parmar M. // Small Interfering RNA (siRNA) Therapy / In: StatPearls Publishing. 2025. https://www.ncbi.nlm.nih.gov/books/NBK580472/
- Lu D., Dou F., Gao J. // Drug. Discov. Ther. 2025. V. 19. P. 131–132. https://doi.org/10.5582/ddt.2025.01031
- Younossi Z.M., Golabi P., Paik J.M., Henry A., Van Dongen C., Henry L. // Hepatology. 2023. V. 77. P. 1335–1347. https://doi.org/10.1097/HEP.0000000000000004
- Vonderlin J., Chavakis T., Sieweke M., Tacke F. // Cell Mol Gastroenterol Hepatol. 2023. V. 15. P. 1311– 1324. https://doi.org/10.1016/j.jcmgh.2023.03.002
- Halimani N., Nesterchuk M., Andreichenko I.N., Tsitrina A.A., Elchaninov A., Lokhonina A., Fatkhudinov T., Dashenkova N.O., Brezgina V., Zatsepin T.S., Mikaelyan A.S., Kotelevtsev Y.V. // Cells. 2022. V. 11. P. 2498. https://doi.org/10.3390/cells11162498
- Wynn T.A., Vannella K.M. // Immunity. 2016. V. 44. P. 450–462. https://doi.org/10.1016/j.immuni.2016.02.015
- Pakshir P., Hinz B. // Matrix Biol. 2018. V. 68–69. P. 81–93. https://doi.org/10.1016/J.MATBIO.2018.01.019
- Wen Y., Lambrecht J., Ju C., Tacke F. // Cell. Mol. Immunol. 2021. V. 18. P. 45–56. https://doi.org/10.1038/s41423-020-00558-8
- Veremeyko T., Yung A.W.Y., Anthony D.C., Strekalova T., Ponomarev E.D. // Front Immunol. 2018. V. 9. P. 2515. https://doi.org/10.3389/fimmu.2018.02515
- Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M. // J. Immunol. 2000. V. 164. P. 6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166
- Murray P.J. // Annu. Rev. Physiol. 2017. V. 79. P. 541– 566.
- Shapouri-Moghaddam A., Mohammadian S., Vazini H., Taghadosi M., Esmaeili S.-A., Mardani F., Seifi B., Mohammadi A., Afshari J.T., Sahebkar A. // J. Cell. Physiol. 2018. V. 233. P. 6425–6440. https://doi.org/10.1002/jcp.26429
- Ajay C. // Circ. Res. 2010. V. 106. P. 1559–1569. https://doi.org/10.1161/CIRCRESAHA.110.216523
- Rath M., Müller I., Kropf P., Closs E.I., Munder M. // Front Immunol. 2014. V. 5. P. 532.
- Macrophage Polarization - Mini-Review // Bio-Rad. https://www.bio-rad-antibodies.com/macrophage-polarization-minireview.html
- Orecchioni M., Ghosheh Y., Pramod A.B., Ley K. // Front Immunol. 2019. V. 10. P. 1084.
- Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B., Lawrence T., Locati M., Mantovani A., Martinez F., Mege J., Mosser D., Natoli G., Saeij J., Schultze J., Shirley K.A., Sica A., Suttles J., Udalova I., van Ginderachter J.A., Vogel S., Wynn T. // Immunity. 2014. V. 41. P. 14–20. https://doi.org/10.1016/j.immuni.2014.06.008
- Jablonski K.A., Amici S.A., Webb L.M., Ruiz-Rosado J. de D., Popovich P.G., Partida-Sanchez S., Gueraude-Arellano M. // PLoS One. 2015. V. 10. e0145342. https://doi.org/10.1371/journal.pone.0145342
- Daniel B., Czimmerer Z., Halasz L., Boto P., Kolostyak Z., Poliska S., Berger W.K., Tzerpos P., Nagy G., Horvath A., Hajas G., Cseh T., Nagy A., Sauer S., Francois-Deleuze J., Szatmari I., Bacsi A., Nagy L. // Genes Dev. 2020. V. 34. P. 1474–1492. https://doi.org/10.1101/gad.343038.120
- Liao J., Hargreaves D.C. // Genes Dev. 2020. V. 34. P. 1407–1409. https://doi.org/10.1101/gad.345140.120
- Pan T., Zhou Q., Miao K., Zhang L., Wu G., Yu J., Xu Y., Xiong W., Li Y., Wang Y. // Theranostics. 2021. V. 11. P. 1192–1206. https://doi.org/10.7150/thno.48152
- Krausgruber T., Blazek K., Smallie T., Alzabin S., Lockstone H., Sahgal N., Hussell T., Feldmann M., Udalova I.A. // Nat. Immunol. 2011. V. 12. P. 231–238. https://doi.org/10.1038/ni.1990
- Weiss M., Blazek K., Byrne A.J., Perocheau D.P., Udalova I.A. // Mediators Inflamm. 2013. V. 2013. P. 245804. https://doi.org/10.1155/2013/245804
- Saliba D.G., Heger A., Eames H.L., Oikonomopoulos S., Teixeira A., Blazek K., Androulidaki A., Wong D., Goh F.G., Weiss M., Byrne A., Pasparakis M., Ragoussis J., Udalova I.A. // Cell Rep. 2014. V. 8. P. 1308–1317. https://doi.org/10.1016/j.celrep.2014.07.034
- Almuttaqi H., Udalova I.A. // FEBS J. 2019. V. 286. P. 1624–1637. https://doi.org/10.1111/FEBS.14654
- Paun A., Bankoti R., Joshi T., Pitha P.M., Stäger S. // PLoS Pathog. 2011. V. 7. https://doi.org/10.1371/journal.ppat.1001246
- Paun A., Reinert J.T., Jiang Z., Medin C., Balkhi M.Y., Fitzgerald K.A., Pitha P.M. // J. Biol. Chem. 2008. V. 283. P. 14295–14308. https://doi.org/10.1074/jbc.M800501200
- Hedl M., Yan J., Witt H., Abraham C. // J. Immunol. 2019. V. 202. P. 920–930. https://doi.org/10.4049/jimmunol.1800226
- Viola A., Munari F., Sánchez-Rodríguez R., Scolaro T., Castegna A. // Front. Immunol. 2019. V. 10. P. 1462. https://doi.org/10.3389/fimmu.2019.01462
- Guiteras J., Ripoll É., Bolaños N., De Ramon L., Fontova P., Lloberas N., Cruzado J.M., Aràn J.M., Aviñó A., Eritja R., Gomà M., Taco R., Grinyó J.M., Torras J. // Mol. Ther. Nucleic Acids. 2021. V. 24. P. 807–821. https://doi.org/10.1016/j.omtn.2021.03.019
- Alzaid F., Lagadec F., Albuquerque M., Ballaire R., Orliaguet L., Hainault I., Blugeon C., Lemoine S., Lehuen A., Saliba D.G., Udalova I.A., Paradis V., Foufelle F., Venteclef N. // JCI Insight. 2016. V. 1. https://doi.org/10.1172/jci.insight.88689
- Sun K., Qu J., Chen J., Dang S., He S., Zhang J., Xie R., Wang Y., Zhang J. // Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2017. V. 33. P. 168–173.
- Günthner R., Anders H.J. // Mediators Inflamm. 2013. V. 2013. P. 731023. https://doi.org/10.1155/2013/731023
- Petro T.M. // J. Immunol. 2020. V. 205. P. 1981–1989. https://doi.org/10.4049/jimmunol.2000462
- Petrasek J., Dolganiuc A., Csak T., Nath B., Hritz I., Kodys K., Catalano D., Kurt-Jones E., Mandrekar P., Szabo G. // Hepatology. 2011. V. 53. P. 649–660. https://doi.org/10.1002/hep.24059
- Iracheta-Vellve A., Petrasek J., Gyongyosi B., Satishchandran A., Lowe P., Kodys K., Catalano D., Calenda C.D., Kurt-Jones E.A., Fitzgerald K.A., Szabo G. // J. Biol. Chem. 2016. V. 291. P. 26794–26805. https://doi.org/10.1074/jbc.M116.736991
- Yanai H., Chiba S., Hangai S., Kometani K., Inoue A., Kimura Y., Abe T., Kiyonari H., Nishio J., Taguchi- Atarashi N., Mizushima Y., Negishi H., Grosschedl R., Taniguchi T. // Proc. Natl. Acad. Sci. USA. 2018. V. 115. P. 5253–5258. https://doi.org/10.1073/pnas.1803936115
- Farlik M., Reutterer B., Schindler C., Greten F., Vogl C., Müller M., Decker T. // Immunity. 2010. V. 33. P. 25–34. https://doi.org/10.1016/j.immuni.2010.07.001
- Moore T.C., Petro T.M. // FEBS Lett. 2013. V. 587. P. 3014–3020. https://doi.org/10.1016/j.febslet.2013.07.025
- Freed S.M., Baldi D.S., Snow J.A., Athen S.R., Guinn Z.P., Pinkerton T.S., Petro T.M., Moore T.C. // FEBS Lett. 2021. V. 595. P. 2665–2674. https://doi.org/10.1002/1873-3468.14200
- Lu Y.C., Yeh W.C., Ohashi P.S. // Cytokine. 2008. V. 42. P. 145–151. https://doi.org/10.1016/j.cyto.2008.01.006
- Fitzgerald K.A., Kagan J.C. // Cell. 2020. V. 180. P. 1044–1066. https://doi.org/10.1016/j.cell.2020.02.041
- Leifer C.A., Medvedev A.E. // J. Leukoc. Biol. 2016. V. 100. P. 927–941. https://doi.org/10.1189/jlb.2MR0316-117RR
- Takaoka A., Yanai H., Kondo S., Duncan G., Negishi H., Mizutani T., Kano S., Honda K., Ohba Y., Mak T.W., Taniguchi T. // Nature. 2005. V. 434. P. 243– 249. https://doi.org/10.1038/nature03308
- Kolb J.P., Casella C.R., SenGupta S., Chilton P.M., Mitchell T.C. // Sci. Signal. 2014. V. 7. https://doi.org/10.1126/scisignal.2005442
- Gudowska M., Gruszewska E., Panasiuk A., Cylwik B., Flisiak R., Świderska M., Szmitkowski M., Chrostek L. // Clin. Exp. Med. 2016. V. 16. P. 523– 528. https://doi.org/10.1007/s10238-015-0388-8
- Caon I., Bartolini B., Parnigoni A., Caravà E., Moretto P., Viola M., Karousou E., Vigetti D., Passi A. // Semin. Cancer Biol. 2020. V. 62. P. 9–19. https://doi.org/10.1016/j.semcancer.2019.07.007
- Yang Y.M., Noureddin M., Liu C., Ohashi K., Kim S.Y., Ramnath D., Powell E.E., Sweet M.J., Roh Y.S., Hsin I.F., Deng N., Liu Z., Liang J., Mena E., Shouhed D., Schwabe R.F., Jiang D., Lu S.C., Noble P.W., Seki E. // Sci. Transl. Med. 2019. V. 11. https://doi.org/10.1126/scitranslmed.aat9284
- Halimani N., Nesterchuk M., Tsitrina A.A., Sabirov M., Andreichenko I.N., Dashenkova N.O., Petrova E., Kulikov A.M., Zatsepin T.S., Romanov R.A., Mikaelyan A.S., Kotelevtsev Y.V. // Sci. Rep. 2024. V. 14. P. 2797. https://doi.org/10.1038/s41598-024-53089-x
- Vollmann E.H., Cao L., Amatucci A., Reynolds T., Hamann S., Dalkilic-Liddle I., Cameron T.O., Hossbach M., Kauffman K.J., Mir F.F., Anderson D.G., Novobrantseva T., Koteliansky V., Kisseleva T., Brenner D., Duffield J., Burkly L.C. // Mol. Ther. Nucleic Acids. 2017. V. 7. P. 314–323. https://doi.org/10.1016/j.omtn.2017.04.014
- Li C., Sun S., Kong H., Xie X., Liang G., Zhang Y., Wang H., Li J. // RSC Chem. Biol. 2024. V. 6. P. 73–80. https://doi.org/10.1039/d4cb00247d
- Alnylam and Regeneron. https://investors.alnylam.com/press-release?id=26976
补充文件



