8-Oxo-2'-deoxyguanosine – Oxidative Stress Control
- 作者: Marmiy N.V1, Esipov D.S1,2
-
隶属关系:
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics
- Lomonosov Moscow State University, Faculty of Biology
- 期: 卷 51, 编号 5 (2025)
- 页面: 812-819
- 栏目: ОБЗОРНЫЕ СТАТЬИ
- URL: https://cardiosomatics.ru/0132-3423/article/view/695708
- DOI: https://doi.org/10.31857/S0132342325050061
- ID: 695708
如何引用文章
详细
8-Oxo-2'-deoxyguanosine is a well-known marker of oxidative stress. Research over the past decade suggests that this compound is probably not a byproduct of oxidative DNA damage, but an important bioregulator driving the cellular response to stress. This review collected and analyzed data on the participation of 8-oxo-2'-deoxyguanosine in the processes of mutagenesis, DNA repair and regulation of gene expression, inflammatory responses, adaptive response to stress, apoptosis and cell transformation. Particular attention is paid to the potential of 8-oxo-2'-deoxyguanosine as a therapeutic agent for inflammatory, autoimmune, degenerative and oncological diseases, as well as traumatic and toxic injuries.
作者简介
N. Marmiy
Lomonosov Moscow State University, Faculty of Bioengineering and BioinformaticsMoscow, Russia
D. Esipov
Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics; Lomonosov Moscow State University, Faculty of Biology
Email: desipov@gmail.com
Department of Bioorganic Chemistry Moscow, Russia; Moscow, Russia
参考
- Li P., Ramm G.A., Macdonald G.A. // Redox Biol. 2016. V. 8. P. 259–270. https://doi.org/10.1016/j.redox.2016.02.003
- Tsukahara H., Shibata R., Ohshima Y., Todoroki Y., Sato S., Ohta N., Hiraoka M., Yoshida A., Nishima S., Mayumi M. // Life Sci. 2003. V. 72. P. 2509– 2516. https://doi.org/10.1016/s0024-3205(03)00145-0
- Di Minno A., Turnu L., Porro B., Squellerio I., Cavalca V., Tremoli E., Di Minno M.N. // Antioxid Redox Signal. 2016. V. 24. P. 548–555. https://doi.org/10.1089/ars.2015.6508
- Lowe F.J., Luettich K., Gregg E.O. // Biomarkers Rev. 2013. V. 18. P. 183–195. https://doi.org/10.3109/1354750X.2013.777116
- Kirkpatrick M., Benoit J., Everett W., Gibson J., Rist M., Fredette N. // Neurotoxicology. 2015. V. 50. P. 170–178. https://doi.org/10.1016/j.neuro.2015.07.001
- Huang Y.K., Lin C.W., Chang C.C., Chen P.F., Wang C.J., Hsueh Y.M., Chiang H.C. // Eur. J. Appl. Physiol. 2012. V. 112. P. 4119–4126. https://doi.org/10.1007/s00421-012-2401-1
- Escobar J., Teramo K., Stefanovic V., Andersson S., Asensi M.A., Arduini A., Cubells E., Sastre J., Vento M. // Neonatology. 2013. V. 103. P. 193–198. https://doi.org/10.1159/000345194
- Есипов Д.С., Сидоренко Е.В., Есипова О.В., Горбачева Т.А., Невредимова Т.С., Крушинский А.Л., Кузенков В.С., Реутов В.П. // Вестник МИТХТ. 2010. Т. 5. С. 69–74.
- Невредимова Т.С., Мармий Н.В., Есипов Д.С., Есипова О.В., Швец В.И. // Вестник МИТХТ. 2014. Т. 9. С. 3–10.
- Мармий Н.В., Есипов Д.С. // Вестник Моск. ун-та. Серия 16. Биология. 2015. P. 19–23.
- Черников А.В., Гудков С.В., Усачева А.М., Брусков В.И. // Усп. биол. химии. 2017. Т. 57. С. 267– 302.
- Huh J.Y., Jung I., Piao L., Ha H., Chung M.H. // Biochem. Biophys. Res. Commun. 2017. V. 491. P. 890–896. https://doi.org/10.1016/j.bbrc.2017.07.132
- Steinhubl S.R. // Am. J. Cardiol. 2008. V. 101. P. 14D– 19D. https://doi.org/10.1016/j.amjcard.2008.02.003
- Kawanishi S., Oikawa S., Murata M. // Antioxid. Redox. Signal. 2005. V. 7. P. 1728–1739. https://doi.org/10.1089/ars.2005.7.1728
- Hahm J.Y., Park J., Jang E.S., Chi S.W. // Exp. Mol. Med. 2022. V. 54. P. 1626–1642. https://doi.org/10.1038/s12276-022-00822-z
- Zandvakili I., Lin Y., Morris J.C., Zheng Y. // Oncogene. 2017. V. 36. P. 3213–3222. https://doi.org/10.1038/onc.2016.473
- Kuchino Y., Mori F., Kasai H., Inoue H., Iwai S., Miura K., Ohtsuka E., Nishimura S. // Nature. 1987. V. 327. P. 77–79. https://doi.org/10.1038/327077a0
- Lowe L.G., Guengerich F.P. // Biochemistry. 1996. V. 35. P. 9840–9849. https://doi.org/10.1021/bi960485x
- de Vega M., Salas M. // Nucleic Acids Res. 2007. V. 35. P. 5096–5107. https://doi.org/10.1093/nar/gkm545
- Garrido P., Mejia E., Garcia-Diaz M., Blanco L., Picher A.J. // Nucleic. Acids Res. 2014. V. 42. P. 534–543. https://doi.org/10.1093/nar/gkt870
- Taggart D.J., Fredrickson S.W., Gadkari, Suo Z. // Chem. Res. Toxicol. 2014. V. 27. P. 931–940. https://doi.org/10.1021/tx500088e
- Whitaker A.M., Smith M.R., Schaich M.A., Freudenthal B.D. // Nucleic. Acids Res. 2017. V. 45. P. 6934–6944. https://doi.org/10.1093/nar/gkx293
- Johansen M.E., Muller J.G., Xu X., Burrows C.J. // Biochemistry. 2005. V. 44. P. 5660–5671. https://doi.org/10.1021/bi047580n
- Kawanishi S., Oikawa S. // Ann. NY Acad. Sci. 2004. V. 1019. P. 278–284. https://doi.org/10.1196/annals.1297.047
- Morero N.R., Argaraña C.E. // FEMS Microbiol. Lett. 2009. V. 290. P. 217–226. https://doi.org/10.1111/j.1574-6968.2008.01411.x
- Völker J., Plum G.E., Klump H.H., Breslauer K.J. // Biopolymers. 2010. V. 93. P. 355–369. https://doi.org/10.1002/bip.21343
- De Luca G., Russo M.T., Degan P., Tiveron C., Zijno A., Meccia E., Ventura I., Mattei E., Nakabeppu Y., Crescenzi M., Pepponi R., Pèzzola A., Popoli P., Bignami M. // PLoS Genet. 2008. V. 4. P. e1000266. https://doi.org/10.1371/journal.pgen.1000266
- Nguyen K.V., Burrows C.J. // J. Am. Chem. Soc. 2011. V. 133. P. 14586–14589. https://doi.org/10.1021/ja2072252
- Moore J.M., Correa R., Rosenberg S.M., Hastings P.J. // PLoS Genet. 2017. V. 13. P. e1006733 . https://doi.org/10.1371/journal.pgen.1006733
- An J., Yin M., Yin J., Wu S., Selby C.P., Yang Y., Sancar A., Xu G.L., Qian M., Hu J. // Nucleic. Acids Res. 2021. V. 49. P. 12252–12267. https://doi.org/10.1093/nar/gkab1022
- Stebbeds W.J.D., Lunec J., Larcombe L.D. // PLoS One. 2012. V. 7. P. e43735. https://doi.org/10.1371/journal.pone.0043735
- Pastukh V., Roberts J.T., Clark D.W., Bardwell G.C., Patel M., Al-Mehdi A.B., Borchert G.M., Gillespie M.N. // Am. J. Physiol. Lung Cell Mol. Physiol. 2015. V. 309. P. 1367–1375. https://doi.org/10.1152/ajplung.00236.2015
- Terzidis M.A., Prisecaru A., Molphy Z., Barron N., Randazzo A., Dumont E., Krokidis M.G., Kellett A., Chatgilialoglu C. // Free Radic. Res. 2016. V. 50. P. S91–S101. https://doi.org/10.1080/10715762.2016.1244820
- Perillo B., Ombra M.N., Bertoni A., Cuozzo C., Sacchetti S., Sasso A., Chiariotti L., Malorni A., Abbondanza C., Avvedimento E.V. // Science. 2008. V. 319. P. 202–206. https://doi.org/10.1126/science.1147674
- Zarakowska E., Gackowski D., Foksinski M., Olinski R. // Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014. V. 764–765. P. 58–63. https://doi.org/10.1016/j.mrgentox.2013.09.002
- Ma L.S., Jiang C.J., Cui M., Lu R., Liu S.S., Zheng B.B., Li L., Li X. // Acta Pharmacol. Sin. 2013. V. 34. P. 1093– 1100. https://doi.org/10.1038/aps.2013.44
- Fleming A.M., Ding Y., Burrows C.J. // Proc. Natl. Acad. Sci. USA. 2017. V. 114. P. 2604–2609. https://doi.org/10.1073/pnas.1619809114
- Hong G.U., Kim N.G., Jeoung D., Ro J.Y. // J. Neuro-immunol. 2013. V. 260. P. 60–73. https://doi.org/10.1016/j.jneuroim.2013.04.002
- Kim J.S., Kim D.Y., Lee J.K., Ro J.Y., Chung M.H. // Eur. J. Pharmacol. 2011. V. 651. P. 218–226. https://doi.org/10.1016/j.ejphar.2010.10.087
- Huh J.Y., Son D.J., Lee Y., Lee J., Kim B., Lee H.M., Jo H., Choi S., Ha H., Chung M.H. // Free Radic. Biol. Med. 2012. V. 53. P. 109–121. https://doi.org/10.1016/j.freeradbiomed.2012.03.023
- Ock C.Y., Kim E.H., Choi D.J., Lee H.J., Hahm K.B., Chung M.H. // World J. Gastroenterol. 2012. V. 18. P. 302–308. https://doi.org/10.3748/wjg.v18.i4.302
- Kim D.H., Cho I.H., Kim H.S., Jung J.E., Kim J.E., Hong G.U., Kim N.G., Ro J.Y. // Radiat. Res. 2014. V. 181. P. 425–438. https://doi.org/10.1667/rr13547.1
- Ko S.H., Lee J.K., Lee H.J., Ye S.K., Kim H.S., Chung M.H. // Biochem. Biophys. Res. Commun. 2014. V. 443. P. 610–616. https://doi.org/10.1016/j.bbrc.2013.12.018
- Shin S.K., Kim K.O., Kim S.H., Kwon O.S., Choi C.S., Jeong S.H., Kim Y.S., Kim J.H., Chung M.H. // J. Gastroenterol. Hepatol. 2020. V. 35. P. 1078–1087. https://doi.org/10.1111/jgh.14979
- Kim H.S., Ye S.K., Cho I.H., Jung J.E., Kim D.H., Choi S., Kim Y.S., Park C.G., Kim T.Y., Lee J.W., Chung M.H. // Free Radic. Biol. Med. 2006. V. 41. P. 1392–1403. https://doi.org/10.1016/j.freeradbiomed.2006.07.018
- Choi S., Choi H.H., Lee S.H., Ko S.H., You H.J., Ye S.K., Chung M.H. // Free Radic. Biol. Med. 2007. V. 43. P. 1594–1603. https://doi.org/10.1016/j.freeradbiomed.2007.08.022
- Choi S., Choi H.H., Choi J.H., Yoon B.H., You H.J., Hyun J.W., Kim J.E., Ye S.K., Chung M.H. // Leuk. Res. 2006. V. 30. P. 1425–1436. https://doi.org/10.1016/j.leukres.2006.03.020
- Lee J.K., Ko S.H., Ye S.K., Chung M.H. // J. Dermatol. Sci. 2013. V. 70. P. 49–57. https://doi.org/10.1016/j.jdermsci.2013.01.010
- Hwang S., Kim S.H., Yoo K.H., Chung M.H., Lee J.W., Son K.H. // BMC Mol. Cell Biol. 2022. V. 23. P. 55. https://doi.org/10.1007/s00421-012-2401-1
- Hajas G., Bacsi A., Aguilera-Aguirre L., Hegde M.L., Tapas K.H., Sur S., Radak Z., Ba X., Boldogh I. // Free Radic. Biol. Med. 2013. V. 61. P. 384–394. https://doi.org/10.1074/jbc.M116.751453
- Kostyuk S., Tabakov V.J., Chestkov V.V., Konkova M.S., Glebova K.V., Baydakova G.V., Ershova E.S., Izhevskaya V.L., Baranova A., Veiko N.N. // Mutat. Res. 2013. V. 747–748. P. 6–18. https://doi.org/10.3390/genes13122283
- Hyun J.W., Jung Y.C., Kim H.S., Choi E.Y., Kim J.E., Yoon B.H., Yoon S.H., Lee Y.S., Choi J., You H.J., Chung M.H. // Mol. Cancer Res. 2003. V. 1. P. 290– 299. https://aacrjournals.org/mcr/article/1/4/290/232239/8- Hydroxydeoxyguanosine-Causes-Death-of-Human
- Park J.M., Han Y.M., Jeong M., Chung M.H., Kwon C., Ko K.H., Hahm K.B. // Free Radic. Biol. Med. 2017. V. 110. P. 151–161. https://doi.org/10.1016/j.freeradbiomed.2017.06.003
- Pazmandi K., Agod Z., Kumar B.V., Szabo A., Fekete T., Sogor V., Veres A., Boldogh I., Rajnavolgyi E., Lanyi A., Bacsi A. // Free Radic. Biol. Med. 2014. V. 77. P. 281– 290. https://doi.org/10.1016/j.freeradbiomed.2014.09.028
补充文件



