Transcriptome Analysis of Zyxin Cytoskeletal Protein Levels Influence on Metabolism and Signaling Pathways in a Model of Xenopus laevis Embryos

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Zyxin is a cytoskeletal protein that plays a crucial role in the assembly and restoration of actin filaments. Research conducted in our laboratory utilizing a model of Xenopus laevis embryos has demonstrated that Zyxin is significantly involved in gene expression regulation and the process of cell differentiation. In recent years, we have acquired compelling data that suggest the capacity of this mechanosensitive protein to participate in mechanisms that link morphogenetic movements to the expression of genes responsible for the formation of axial structures and the maintenance of stem cell status during the intricate process of embryogenesis, which is pivotal in the life cycle of any organism. In this article, we present the latest findings from our investigation into the genes, signaling pathways, and biological processes that are regulated in conjunction with the activity of Zyxin. To conduct this study, high-throughput sequencing of mRNA pools from X. laevis embryonic cells at the neurula stage was performed. This analysis included samples exhibiting normal Zyxin function, as well as those with increased or suppressed Zyxin function, induced by morpholino oligonucleotides. The application of bioinformatics analysis enabled us to identify Zyxin-dependent signaling pathways and biological processes that are essential for embryogenesis from a comprehensive dataset of genes. Our results indicate that the suppression of Zyxin expression leads to alterations in the expression profiles of genes involved in more than 16 distinct signaling cascades and impacts 27 biological processes. Notably, the most pronounced effects were observed in processes associated with morphogenesis and gene expression. The findings of this study hold significant fundamental implications. Investigating Zyxin role in transducing mechanical stimuli to the gene expression machinery is vital for understanding the coordination between biomechanics and differentiation during embryogenesis. Furthermore, this research may pave the way for utilizing Zyxin as a potential diagnostic marker for various diseases.

作者简介

E. Parshina

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

A. Zaraisky

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

N. Martynova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: martnat61@gmail.com
Moscow, Russia

参考

  1. Martynova N.Y., Eroshkin F.M., Ermolina L.V., Ermakova G.V., Korotaeva A.L., Smurova K.M., Gyoeva F.K., Zaraisky A.G. // Dev. Dyn. 2008. V. 237. P. 736–749. https://doi.org/10.1002/dvdy.21471
  2. Martynova N.Y., Ermolina L.V., Eroshkin F.M., Gioeva F.K., Zaraisky A.G. // Russ. J. Bioorg. Chem. 2008. V. 34. P. 513–516. https://doi.org/10.1134/S1068162008040183
  3. Martynova N.Y., Ermolina L.V., Ermakova G.V., Eroshkin F.M., Gyoeva F.K., Baturina N.S., Zaraisky A.G. // Dev. Biol. 2013. V. 380. P. 37–48. https://doi.org/10.1016/j.ydbio.2013.05.005
  4. Martynova N.Y., Ermolina L.V., Eroshkin F.M., Zaraisky A.G. // Russ. J. Bioorg. Chem. 2015. V. 41. P. 1–5. https://www.ncbi.nlm.nih.gov/pubmed/27125030
  5. Martynova N.Y., Parshina E.A., Eroshkin F.M., Zaraisky A.G. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 530–536. https://doi.org/10.31857/S013234232004020X
  6. Parshina E.A., Eroshkin F.M., Orlov E.E., Gyoeva F.K., Shokhina A.G., Staroverov D.B., Belousov V.V., Zhigalova N.A., Prokhortchouk E.B., Zaraisky A.G., Martynova N.Y. // Cell Rep. 2020. V. 33. P. 108396. https://doi.org/10.1016/j.celrep.2020.108396
  7. Parshina E.A., Orlov E.E., Zaraisky A.G., Martynova N.Y. // Int. J. Mol. Sci. 2022. V. 23. P. 5627. https://doi.org/10.3390/ijms23105627
  8. Martynova N.Y., Parshina E.A., Zaraisky A.G. // FEBS J. 2021. V. 290. P. 66–72. https://doi.org/10.1111/febs.16308
  9. Parshina E.A., Zaraisky A.G., Martynova N.Y. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 338–344. https://doi.org/10.31857/S0132342324030133
  10. Huang D.W., Sherman B.T., Lempicki R.A. // Nat. Protoc. 2009. V. 4. P. 44–57. https://doi.org/10.1038/nprot.2008.211
  11. Hirota T., Morisaki T., Nishiyama Y., Marumoto T., Tada K., Hara T., Masuko N., Inagaki M., Hatakeyama K., Saya H. // J. Cell Biol. 2000. V. 149. P. 1073–1086. https://doi.org/10.1083/jcb.149.5.1073
  12. Zhou J., Zeng Y., Cui L., Chen X., Stauffer S., Wang Z., Yu F., Lele S.M., Talmon G.A., Black A.R., Chen Y., Dong J. // Proc. Natl. Acad. Sci. USA. 2018. V. 115. P. E6760–E6769. https://doi.org/10.1073/pnas.1800621115
  13. Brunet A., Bonni A., Zigmond M.J., Lin M.Z., Juo P., Hu L.S., Anderson M.J., Arden K.C., Blenis J., Greenberg M.E. // Cell. 1999. V. 96. P. 857–868. https://doi.org/10.1016/s0092-8674(00)80595-4
  14. Dijkers P.F., Medema R.H., Lammers J.W., Koenderman L., Coffer P.J. // Curr. Biol. 2000. V. 10. P. 1201– 1204. https://doi.org/10.1016/s0960-9822(00)00728-4
  15. Lee S.S., Kennedy S., Tolonen A.C., Ruvkun G. // Science. 2003. V. 300. P. 644–647. https://doi.org/10.1126/science.1083614
  16. Lee J.W., Hur J., Kwon Y.W., Chae C.W., Choi J.I., Hwang I., Yun J.Y., Kang J.A., Choi Y.E., Kim Y.H., Lee S.E., Lee C., Jo D.H., Seok H., Cho B.S., Baek S.H., Kim H.S. // J. Hematol. Oncol. 2021. V. 14. P. 148. https://doi.org/10.1186/s13045-021-01147-6
  17. Liang X., Ding Y., Zhang Y., Chai Y.H., He J., Chiu S.M., Gao F., Tse H.F., Lian Q. // Cell Death Dis. 2015. V. 6. P. e1765. https://doi.org/10.1038/cddis.2015.91

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025