Oral Indole-3-acetate Supplementation Increases the Abundance of Bifidobacterium pseudolongum and Akkermansia muciniphila in the Intestine of Mice on a High-Fat Diet

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

It is known that even a short-term high-fat diet has a negative effect on the metabolic health of the organism. However, under the influence of diet, first of all, the intestinal microbiota undergoes changes. The type of diet, dietary supplements and drugs affect both the taxonomic diversity of the microbiota and its functional state. It is known that with the participation of the intestinal microbiota, tryptophan is converted into indole and its various derivatives. The leading role of indoles in the regulation of the expression of tight junction proteins, and accordingly the regulation of intestinal permeability, has also been established. The aim of our study was to assess the effect of indole-3-acetate on the taxonomic diversity of the microbiota of the small and large intestines, as well as to establish the potential prebiotic value of this indole derivative under conditions of short-term use of a high-fat diet. C57/black6 SPF mice aged 4-5 weeks (n=60, females) were randomly divided into six groups. A high-fat diet was achieved by feeding laboratory animals a high-fat diet of animal origin, providing up to 30% of the total calories. Indole-3-acetate was administered together with a standard or high-fat diet via an atraumatic intragastric tube at a single dose of 0.1392 mg per mouse for 28 days. In our study, we showed for the first time that in C57/black6 SPF mice on a short-term high-fat diet, indole-3-acetate increases the representation of Bifidobacterium pseudolongum in the microbial community of both the small intestine and the colon. Whereas, the increase in Akkermansia muciniphila was only in the microbial community of the colon. Indole-3-acetate intake provides normoglycemia in animals on a short-term high-fat diet. The use of indole-3-acetate in various metabolic diseases associated with high-fat diet and dysbacteriosis may be a promising therapeutic approach to correct metabolic disorders through modulation of the microbiotic community.

作者简介

O. Shatova

Pirogov Russian National Research Medical University (Pirogov University), Ministry of Health of the Russian Federation

Email: shatova.op@gmail.com
Moscow, Russia

A. Zabolotneva

Pirogov Russian National Research Medical University (Pirogov University), Ministry of Health of the Russian Federation

Moscow, Russia

S. Rumyantsev

Pirogov Russian National Research Medical University (Pirogov University), Ministry of Health of the Russian Federation

Moscow, Russia

A. Shestopalov

Pirogov Russian National Research Medical University (Pirogov University), Ministry of Health of the Russian Federation

Moscow, Russia

参考

  1. Shen J., Yang L., You K., Chen T., Su Z., Cui Z., Wang M., Zhang W., Liu B., Zhou K., Lu H. // Front Immunol. 2022. V. 13. P. 762580. https://doi.org/10.3389/fimmu.2022.762580
  2. Liang H., Dai Z., Liu N., Ji Y., Chen J., Zhang Y., Yang Y., Li J., Wu Z., Wu G. // Front Microbiol. 2018. V. 9. P. 1736. https://doi.org/10.3389/fmicb.2018.01736
  3. Zhang Q., Zhao Q., Li T., Lu L., Wang F., Zhang H., Liu Z., Ma H., Zhu Q., Wang J., Zhang X., Pei Y., Liu Q., Xu Y., Qie J., Luan X., Hu Z., Liu X. // Cell Metab. 2023. V. 35. P. 943–960. https://doi.org/10.1016/j.cmet.2023.04.015
  4. Shatova O. P., Shestopalov A. V. // Biology Bulletin Rev. 2023. V. 13. P. 81–91. https://doi.org/ 10.1134/s2079086423020068
  5. Vaga S., Lee S., Ji B., Andreasson A., Talley N.J., Agréus L., Bidkhori G., Kovatcheva-Datchary P., Park J., Lee D., Proctor G., Ehrlich S.D., Nielsen J., Engstrand L., Shoaie S. // Sci Rep. 2020. V. 10. P. 14977. https://doi.org/ 10.1038/s41598-020-71939-2
  6. Kumar A., Sperandio V. // MBio. 2019. V. 10. P. e03318-19. https://doi.org/ 10.1128/mBio.01031-19
  7. Lee H., Lee Y., Kim J., An J., Lee S., Kong H., Song Y., Lee C.K., Kim K. // Gut Microbes. 2018. V. 9. P. 155–165. https://doi.org/ 10.1080/19490976.2017.1405209
  8. Ding Y, Yanagi K, Yang F., Callaway E., Cheng C., Hensel M.E., Menon R., Alaniz R.C., Lee K., Jayaraman A. // Elife. 2024. V. 13. P. 87458. https://doi.org/ 10.7554/eLife.87458
  9. Kumar A., Sperandio V. // mBio. 2020. V. 10. P. e03318-19. https://doi.org/ 10.1128/mBio.03318-19
  10. Krishnan S., Ding Y., Saeidi N., Choi M., Sridharan G.V., Sherr D.H., Yarmush M.L., Alaniz R.C., Jayaraman A., Lee K. // Cell Reports. 2019. V. 23. P. 1099–1111. https://doi.org/10.1016/j.celrep.2019.08.080
  11. Silva Y. P., Bernardi A., Frozza R. L. // Front Endocrinol (Lausanne). 2020. V. 11. P. 25. https://doi.org/10.3389/fendo.2020.00025
  12. Yao Y., Liu Y., Xu Q., Mao L. // Molecules. 2024. V. 29. P. 379. https://doi.org/10.3390/molecules29020379
  13. Coutinho W., Halpern B. // Diabetol Metab Syndr. 2024. V. 16. P. 6. https://doi.org/10.1186/s13098-023-01233-4
  14. Dapa T., Ramiro R.S., Pedro M.F., Gordo I., Xavier K.B. // Cell Host Microbe. 2022. V. 30. P. 183–199. https://doi.org/10.1016/j.chom.2022.01.002
  15. Contreras-Rodriguez O., Arnoriaga-Rodríguez M., Miranda-Olivos R., Blasco G., Biarnés C., Puig J., Rivera-Pinto J., Calle M.L., Pérez-Brocal V., Moya A., Coll C., Ramió-Torrentà L., Soriano-Mas C., Fernandez-Real J.M. // Int J Obes. 2022. V. 46. P. 30–38. https://doi.org/10.1038/s41366-021-00953-9
  16. Шестопалов А.В., Кроленко Е.В., Недорубов А.А., Борисенко О.В., Попруга К.Э., Макаров В.В., Юдин С.М., Гапонов А.М., Румянцев С.А. // Бюлл. эксперимент. биол. и мед. 2024. Т. 178. С. 256–264. https://doi.org/10.47056/0365-9615-2024-178-8-256-264
  17. Lee J., Kim M.J., Moon S., Lim J.Y., Park K.S., Jung H.S. // Endocrinol. Metabolism. 2023. V. 38. P. 782–787. https://doi.org/10.3803/EnM.2023.1738
  18. Prudencio A.P., Machado N.M., Fonseca D.C. // Clin. Nutr. ESPEN. 2021. V. 46. P. S552. https://doi.org/10.1016/j.clnesp.2021.09.035
  19. Zou Y., Zhao P., Axmacher J. C. // Ecosphere. 2023. V. 14. P. 4363. https://doi.org/10.1002/ecs2.4363
  20. Jian H., Liu Y., Wang X., Dong X., Zou X. // Int. J. Mol. Sci. 2023. V. 24. P. 3900. https://doi.org/10.3390/ijms24043900
  21. van der Lugt B., van Beek A.A., Aalvink S., Meijer B., Sovran B., Vermeij W.P., Brandt R.M.C., de Vos W.M., Savelkoul H.F.J., Steegenga W.T., Belzer C. // Immun. Ageing. 2019. V. 16. P. 6. https://doi.org/10.1186/s12979-019-0145-z
  22. Hasani A., Ebrahimzadeh S., Hemmati F., Khabbaz A., Hasani A., Gholizadeh P. // J. Med. Microbiol. 2021. V. 70. P. 10. https://doi.org/10.1099/jmm.0.001435
  23. Rodrigues V.F., Elias-Oliveira J., Pereira Í.S., Pereira J.A., Barbosa S.C., Machado M.S.G., Carlos D. // Front Immunol. 2022. V. 13. P. 934695. https://doi.org/10.3389/fimmu.2022.934695
  24. Hou X., Zhang P., Du H., Chu W., Sun R., Qin S., Tian Y., Zhang Z., Xu F. // Front Pharmacol. 2021. V. 12. P. 725583. https://doi.org/10.3389/fphar.2021.725583
  25. Gubernatorova E.O., Gorshkova E.A., Bondareva M.A., Podosokorskaya O.A., Sheynova A.D., Yakovleva A.S., Bonch-Osmolovskaya E.A., Nedospasov S.A., Kruglov A.A., Drutskaya M.S. // Front Immunol. 2023. V. 14. P. 1303795. https://doi.org/10.3389/fimmu.2023.1303795
  26. Cani P.D., Depommier C., Derrien M., Everard A., de Vos Willem M. // Nat. Rev. Gastroenterol. Hepatol. 2022. V. 19. P. 625-637. https://doi.org/10.1038/s41575-022-00631-9
  27. https://docs.cntd.ru/document/901909691/titles/7EA0KF
  28. https://www.fgu.ru/upload/iblock/f5a/fkamlebvdpt6ic91d37ole41wxd06qe5.pdf
  29. Shaheen N., Miao J., Xia B., Zhao Y., Zhao J. // FASEB J. 2025. V. 15. P. 70574. P. https://doi.org/10.1096/fj.202500295R
  30. Martinez-Guryn K., Hubert N., Frazier K., Urlass S., Musch M.W., Ojeda P., Pierre J.F., Miyoshi J., Sontag T.J., Cham C.M., Reardon C.A., Leone V., Chang E.B. // Cell. Host. Microbe. 2018. V. 23. P. 458–469. https://doi.org/10.1016/j.chom.2018.03.011
  31. Bolyen Evan, Rideout Jai Ram, Dillon Matthew R. // Nat. Biotechnol. 2019. V. 37, P. 852–857. https://doi.org/10.1038/s41587-019-0252-6

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025