Development of an Experimental Intracranial PDX Model of Human Glioblastoma in NSG Mice

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Development of an orthotopic intracranial model based on a human glioblastoma cell culture in immunodeficient mice is an important task both for studying the invasiveness and aggressiveness of tumor cell behavior, and for creating a reliable model to evaluate the efficacy of new drugs for glioblastoma therapy. In this study, a comparative analysis was conducted using a glioblastoma cell line (U87MG) and primary glioblastoma cells obtained from a patient (culture 022), following subcutaneous and orthotopic intracranial xenotransplantation into NSG immunodeficient mice. It was shown that in both groups of animals with orthotopic xenografts, the tumors grew both deep into the brain tissue and along the brain surface, while in the case of the primary culture 022, growth toward the ventricles was also observed. The non-cell-line-derived (primary) cells exhibited an epithelioid morphology, whereas U87MG cells showed a more sarcomatoid appearance. The U87MG cell line was tumorigenic in both locations. However, the primary culture 022 formed tumors only following intracranial, but not subcutaneous, xenotransplantation, indicating the neuro-specificity of this model. Therefore, it may serve as a more relevant glioblastoma model compared to the U87MG cell line-based model.

作者简介

N. Antipova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

D. Bondarenko

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

D. Mazur

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

A. Isakova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences; Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

M. Gasparian

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

O. Patsap

Federal Center for Brain and Neurotechnology of the Federal Medical and Biological Agency of Russia

Moscow, Russia

V. Pavlov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

E. Mikhailov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

N. Goryacheva

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

D. Rzhevsky

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

S. Semushina

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

D. Dolgikh

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences; Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

A. Murashev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

A. Yagolovich

Lomonosov Moscow State University

Email: yagolovichav@my.msu.ru
Moscow, Russia

参考

  1. Das J.K., Das M. // Handbook of Animal Models and its Uses in Cancer Research. 2023. P. 503–526. https://doi.org/0.1007/978-981-19-3824-5_26
  2. Muldoon L.L., Alvarez J.I., Begley D.J., Boado R.J., Del Zoppo G.J., Doolittle N.D., Engelhardt B., Hallenbeck J.M., Lonser R.R., Ohlfest J.R., Prat A., Scarpa M., Smeyne R.J., Drewes L.R., Neuwelt E.A. // J. Cereb. Blood Flow Metab. 2013. V. 33. P. 13–21. https://doi.org/10.1038/jcbfm.2012.153
  3. Larionova T.D., Bastola S., Aksinina T.E., Anufrieva K.S., Wang J., Shender V.O., Andreev D.E., Kovalenko T.F., Arapidi G.P., Shnaider P.V., Kazakova A.N., Latyshev Y.A., Tatarskiy V.V., Shtil A.A., Moreau P., Giraud F., Li C., Wang Y., Rubtsova M.P., Dontsova O.A., Condro M., Ellingson B.M., Shakhparonov M.I., Kornblum H.I., Nakano I., Pavlyukov M.S. // Nat. Cell. Biol. 2022. V. 24. P. 1541– 1557. https://doi.org/10.1038/s41556-022-00994-w
  4. Jenkins R.B., Blair H., Ballman K.V., Giannini C., Arusell R.M., Law M., Flynn H., Passe S., Felten S., Brown P.D., Shaw E.G., Buckner J.C. // Cancer Res. 2006. V. 66. P. 9852–9861. https://doi.org/10.1158/0008-5472.CAN-06-1796
  5. Sanson M., Marie Y., Paris S., Idbaih A., Laffaire J., Ducray F., El Hallani S., Boisselier B., Mokhtari K., Hoang-Xuan K., Delattre J.Y. // J. Clin. Oncol. 2009. V. 27. P. 4150–4154. https://doi.org/10.1200/JCO.2009.21.9832
  6. Cohen A.L., Holmen S.L., Colman H. // Curr. Neurol. Neurosci. Rep. 2013. V. 13. P. 345. https://doi.org/10.1007/s11910-013-0345-4
  7. Xu C., Hou P., Li X., Xiao M., Zhang Z., Li Z., Xu J., Liu G., Tan Y., Fang C. // Cancer Biol. Med. 2024. P. 1–19. https://doi.org/10.20892/j.issn.2095-3941.2023.0510
  8. Aubry M., de Tayrac M., Etcheverry A., Clavreul A., Saikali S., Menei P., Mosser J. // Oncotarget. 2015. V. 6. P. 12094–12109. https://doi.org/10.18632/oncotarget.3297
  9. Freedman L.P., Gibson M.C., Ethier S.P., Soule H.R., Neve R.M., Reid Y.A. // Nat. Methods. 2015 V. 6. P. 493–497. https://doi.org/10.1038/nmeth.3403
  10. Vacas-Oleas, A. // J. Bacteriol. Parasitol. 2013. V. S1. № 01. https://doi.org/10.4172/scientificreports.609
  11. Isakova A.A., Artykov A.A., Plotnikova E.A., Trunova G.V., Khokhlova V.А., Pankratov A.A., Shuvalova M.L., Mazur D.V., Antipova N.V., Shakhparonov M.I., Dolgikh D.A., Kirpichnikov M.P., Gasparian M.E., Yagolovich A.V. // Int. J. Biol. Macromol. 2024. V. 255. P. 128096. https://doi.org/10.1016/j.ijbiomac.2023.128096
  12. Goryacheva N.A. // Biomedicine. 2024. V. 20. P. 35–37.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025