Improved Efficiency of OX40L-Based Gene Therapy Using a Non-Viral Delivery System in Fibroblast-Enriched Mouse Tumor Models

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Malignant tumors, during their progression, are capable of forming a permissive microenvironment that influences their further growth and development. Tumor-associated fibroblasts (TAFs) play a significant role in this process. In the present study, we generated subcutaneous murine tumors by inoculating a co-culture of cancer cells and fibroblasts to create tumors enriched with microenvironmental cells. Once the tumor nodule had formed, an intratumoral injection was performed using a formulation containing a plasmid encoding the ligand for immune checkpoint receptors –OX40L – under the control of a CMV promoter. For efficient cellular delivery, the plasmid was encapsulated in a polymer shell based on PEG-PEI-TAT. We evaluated the impact of this treatment on tumor growth. In this experimental model, fibroblasts were artificially introduced into the tumor to partially simulate a developed tumor microenvironment. These tumors demonstrated an increased proliferation rate. However, intratumoral administration of the non-viral OX40L-encoding agent into fibroblast-enriched tumors resulted in a notable increase in the rate of complete tumor regression, reaching up to 25%. It is hypothesized that introduced fibroblasts may perform antigen-presenting functions and/or serve as an additional source of signals that activate the immune system.

作者简介

V. Pleshkan

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences; KC NBICS-nature-like technologies, NRC "Kurchatov Institute"

Email: vpleshkan@gmail.com
Moscow, Russia; Moscow, Russia

M. Zinovyeva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Moscow, Russia

D. Didych

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Moscow, Russia

I. Alekseenko

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences; KC NBICS-nature-like technologies, NRC "Kurchatov Institute"

Moscow, Russia; Moscow, Russia

参考

  1. Hinshaw D.C., Shevde L.A. // Cancer Res. 2019. V. 79. P. 4557–4566. https://doi.org/10.1158/0008-5472.CAN-18-3962
  2. Neophytou C.M., Panagi M., Stylianopoulos T., Papageorgis P. // Cancers (Basel). 2021. V. 13. P. 2053. https://doi.org/10.3390/cancers13092053
  3. Wang Q., Shao X., Zhang Y., Zhu M., Wang F.X.C., Mu J., Li J., Yao H., Chen K. // Cancer Med. 2023. V. 12. P. 11149–11165. https://doi.org/10.1002/cam4.5698
  4. Rabinovich G.A., Gabrilovich D., Sotomayor E.M. // Annu. Rev. Immunol. 2007. V. 25. P. 267–296. https://doi.org/10.1146/annurev.immunol.25.022106.141609
  5. Heinhuis K.M., Ros W., Kok M., Steeghs N., Beijnen J.H., Schellens J.H.M. // Ann. Oncol. 2019. V. 30. P. 219–235. https://doi.org/10.1093/annonc/mdy551
  6. Sharma P., Goswami S., Raychaudhuri D., Siddiqui B.A., Singh P., Nagarajan A., Liu J., Subudhi S.K., Poon C., Gant K.L., Herbrich S.M., Anandhan S., Islam S., Amit M., Anandappa G., Allison J.P. // Cell. 2023. V. 186. P. 1652–1669. https://doi.org/10.1016/j.cell.2023.03.006
  7. Barrett R.L., Pure E. // eLife. 2020. V. 9. P. e57243. https://doi.org/10.7554/eLife.57243
  8. Ohlund D., Elyada E., Tuveson D. // J. Exp. Med. 2014. V. 211. P. 1503–1523. https://doi.org/10.1084/jem.20140692
  9. Erdogan B., Webb D.J. // Biochem. Soc. Trans. 2017. V. 45. P. 229–236. https://doi.org/10.1042/BST20160387
  10. Saw P.E., Chen J., Song E. // Trends Cancer. 2022. V. 8. P. 527–555. https://doi.org/10.1016/j.trecan.2022.03.001
  11. Nurmik M., Ullmann P., Rodriguez F., Haan S., Letellier E. // Int. J. Cancer. 2020. V. 146. P. 895–905. https://doi.org/10.1002/ijc.32193
  12. Kanzaki R., Pietras K. // Cancer Sci. 2020. V. 111. P. 2708–2717. https://doi.org/10.1111/cas.14537
  13. Плешкан В.В., Алексеенко И.В., Тюлькина Д.В., Кузьмич А.И., Зиновьева М.В., Свердлов Е.Д. // Мол. Генет. Микробиол. Вирусол. 2016. Т. 34. С. 90–97.
  14. Hu D., Zhuo W., Gong P., Ji F., Zhang X., Chen Y., Mao M., Ju S., Pan Y., Shen J. // Heliyon. 2023. V. 9. P. e19803. https://doi.org/10.1016/j.heliyon.2023.e19803
  15. Paunescu V., Bojin F.M., Tatu C.A., Gavriliuc O.I., Rosca A., Gruia A.T., Tanasie G., Bunu C., Crisnic D., Gherghiceanu M., Tatu F.R., Tatu C.S., Vermesan S. // J. Cell. Mol. Med. 2011. V. 15. P. 635–646. https://doi.org/10.1111/j.1582-4934.2010.01044.x
  16. Chen J., Chen R., Huang J. // Front. Immunol. 2024. V. 15. P. 1372432. https://doi.org/10.3389/fimmu.2024.1372432
  17. Kerdidani D., Aerakis E., Verrou K.M., Angelidis I., Douka K., Maniou M.A., Stamoulis P., Goudevenou K., Prados A., Tzaferis C., Ntafis V., Vamvakaris I., Kaniaris E., Vachlas K., Sepsas E., Koutsopoulos A., Potaris K., Tsoumakidou M. // J. Exp. Med. 2022. V. 219. P. e20210815. https://doi.org/10.1084/jem.20210815
  18. Chen X., Chen F., Jia S., Lu Q., Zhao M. // Theranostics. 2025. V. 15. P. 3332–3344. https://doi.org/10.7150/thno.104900
  19. Bhattacharjee S., Hamberger F., Ravichandra A., Miller M., Nair A., Affo S., Filliol A., Chin L., Savage T.M., Yin D., Wirsik N.M., Mehal A., Arpaia N., Seki E., Mack M., Zhu D., Sims P.A., Kalluri R., Stanger B.Z., Olive K.P., Schmidt T., Wells R.G., Mederacke I., Schwabe R.F. // J. Clin. Invest. 2021. V. 131. P. e146987. https://doi.org/10.1172/JCI146987
  20. Zhang H., Yue X., Chen Z., Liu C., Wu W., Zhang N., Liu Z., Yang L., Jiang Q., Cheng Q., Luo P., Liu G. // Mol. Cancer. 2023. V. 22. P. 159. https://doi.org/10.1186/s12943-023-01860-5
  21. Remsing Rix L.L., Sumi N.J., Hu Q., Desai B., Bryant A.T., Li X., Welsh E.A., Fang B., Kinose F., Kuenzi B.M., Chen Y.A., Antonia S.J., Lovly C.M., Koomen J.M., Haura E.B., Marusyk A., Rix U. // Sci. Signal. 2022. V. 15. P. eabj5879. https://doi.org/10.1126/scisignal.abj5879
  22. Peltier A., Seban R.D., Buvat I., Bidard F.C., Mechta-Grigoriou F. // Semin. Cancer Biol. 2022. V. 86. P. 262–272. https://doi.org/10.1016/j.semcancer.2022.04.008
  23. Jelinek D., Zhang E.R., Ambrus A., Haley E., Guinn E., Vo A., Le P., Kesaf A.E., Nguyen J., Guo L., Frederick D., Sun Z., Guo N., Sevier P., Bilotta E., Atai K., Voisin L., Coller H.A. // J. Vis. Exp. 2020. V. 166. P. e61883. https://doi.org/10.3791/61883
  24. Li Q.X., Feuer G., Ouyang X., An X. // Pharmacol. Ther. 2017. V. 173. P. 34–46. https://doi.org/10.1016/j.pharmthera.2017.02.002
  25. Noel A., De Pauw-Gillet M.C., Purnell G., Nusgens B., Lapiere C.M., Foidart J.M. // Br. J. Cancer. 1993. V. 68. P. 909–915. https://doi.org/10.1038/bjc.1993.453
  26. Carretta M., Thorseth M.L., Schina A., Agardy D.A., Johansen A.Z., Baker K.J., Khan S., Romer A.M.A., Fjaestad K.Y., Linder H., Kuczek D.E., Donia M., Grontved L., Madsen D.H. // Front. Immunol. 2023. V. 14. P. 1320614. https://doi.org/10.3389/fimmu.2023.1320614
  27. Pleshkan V.V., Zinovyeva M.V., Antonova D.V., Alekseenko I.V. // Biomedicines. 2023. V. 11. P. 2017. https://doi.org/10.3390/biomedicines11072017
  28. Nishishita R., Morohashi S., Seino H., Wu Y., Yoshizawa T., Haga T., Saito K., Hakamada K., Fukuda S., Kijima H. // Oncol. Lett. 2018. V. 15. P. 6195–6202. https://doi.org/10.3892/ol.2018.8097
  29. Monteran L., Erez N. // Front. Immunol. 2019. V. 10. P. 1835. https://doi.org/10.3389/fimmu.2019.01835
  30. Ando R., Sakai A., Iida T., Kataoka K., Mizutani Y., Enomoto A. // Cancers. 2022. V. 14. P. 3315. https://doi.org/10.3390/cancers14143315
  31. Niu N., Shen X., Wang Z., Chen Y., Weng Y., Yu F., Tang Y., Lu P., Liu M., Wang L., Sun Y., Yang M., Shen B., Jin J., Lu Z., Jiang K., Shi Y., Xue J. // Cancer Cell. 2024. V. 42. P. 869–884. https://doi.org/10.1016/j.ccell.2024.03.005
  32. Serebrovskaya E.O., Yuzhakova D.V., Ryumina A.P., Druzhkova I.N., Sharonov G.V., Kotlobay A.A., Zagaynova E.V., Lukyanov S.A., Shirmanova M.V. // Cytokine. 2016. V. 84. P. 10–16. https://doi.org/10.1016/j.cyto.2016.05.005
  33. Алексеенко И.В., Костина М.Б., Серебровская Е.О., Потапов В.К., Свердлов Е.Д. // Мол. Генет. Микробиол. Вирусол. 2018. Т. 36. С. 14–18.
  34. Ulasov A.V., Khramtsov Y.V., Trusov G.A., Rosenkranz A.A., Sverdlov E.D., Sobolev A.S. // Mol. Ther. 2011. V. 19. P. 103–112. https://doi.org/10.1038/mt.2010.233
  35. Rakitina O.A., Kuzmich A.I., Bezborodova O.A., Kondratieva S.A., Pleshkan V.V., Zinovyeva M.V., Didych D.A., Sass A.V., Snezhkov E.V., Kostina M.B., Koksharov M.O., Alekseenko I.V. // Front. Immunol. 2024. V. 15. P. 1410564. https://doi.org/10.3389/fimmu.2024.1410564
  36. Antonova D.V., Alekseenko I.V., Siniushina A.K., Kuzmich A.I., Pleshkan V.V. // Int. J. Mol. Sci. 2020. V. 21. P. 6098. https://doi.org/10.3390/ijms21176098

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025