NLS Peptide Improves the Efficiency of pDNA Delivery into Eukaryotic Cells by Cationic Liposomes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Conventional and multifunctional cationic liposomes that efficiently deliver plasmid DNA (pDNA) were obtained. Partial inhibition of receptor-mediated endocytosis of pDNA complexes with multifunctional cationic liposomes containing folate lipids was shown in the presence of free folic acid in the cellular medium. Additional formation of pDNA complexes with the nuclear localization signal (NLS) peptide allowed increasing the efficiency of green fluorescent protein expression by 1.5–2 times using conventional and multifunctional cationic liposomes. Addition of the NLS peptide to pDNA and subsequent formation of complexes with cationic liposomes can be used to solve the problem of efficient pDNA delivery into eukaryotic cells.

作者简介

E. Shmendel

Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University

Email: elena_shmendel@mail.ru
Moscow, Russia

O. Markov

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Novosibirsk, Russia

M. Zenkova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Novosibirsk, Russia

M. Maslov

Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University

Moscow, Russia

参考

  1. Scalzo S., Santos A.K., Ferreira H.A.S., Costa P.A., Prazeres P.H.D.M., da Silva N.J.A., Guimarães L.C., E Silva M.M., Rodrigues Alves M.T.R., Viana C.T.R., Jesus I.C.G., Rodrigues A.P., Birbrair A., Lobo A.O., Frezard F., Mitchell M.J., Guatimosim S., Guimaraes P.P.G. // Int. J. Nanomedicine. 2022. V. 17. P. 2865–2881. https://doi.org/10.2147/IJN.S366962
  2. Prazeres P.H.D.M., Ferreira H., Costa P.A.C., da Silva W., Alves M.T., Padilla M., Thatte A., Santos A.K., Lobo A.O., Sabino A., Del Puerto H.L., Mitchell M.J., Guimaraes P.P.G. // Int. J. Nanomedicine. 2023. V. 18. P. 5891–5904. https://doi.org/10.2147/IJN.S424723
  3. Lu B., Lim J.M., Yu B., Song S., Neeli P., Sobhani N.K.P., Bonam S.R., Kurapati R., Zheng J., Chai D. // Front. Immunol. 2024. V. 15. P. 1–24. https://doi.org/10.3389/fimmu.2024.1332939
  4. Baghban R., Ghasemian A., Mahmoodi S. // Arch. Microbiol. 2023. V. 205. P. 1–15. https://doi.org/10.1007/s00203-023-03480-5
  5. Lim M., Badruddoza A.Z.M., Firdous J., Azad M., Mannan A., Al-Hilal T.A., Cho C.S., Islam M.A. // Pharmaceutics. 2020. V. 12. P. 1–29. https://doi.org/10.3390/pharmaceutics12010030
  6. Durymanov M., Reineke J. // Front. Pharmacol. 2018. V. 9. P. 1–15. https://doi.org/10.3389/fphar.2018.00971
  7. Amoako K., Mokhammad A., Malik A., Yesudasan S., Wheba A., Olagunju O., Gu S.X., Yarovinsky T., Faustino E.V.S., Nguyen J., Hwa J. // Front. Med. Technol. 2025. V. 7. P. 1591119. https://doi.org/10.3389/fmedt.2025.1591119.
  8. Xu E., Saltzman W.M., Piotrowski-Daspit A.S. // J. Control. Release. 2021. V. 335. P. 465–480. https://doi.org/10.1016/j.jconrel.2021.05.038
  9. Cheng X., Lee R.J. // Adv. Drug Deliv. Rev. 2016. V. 99. P. 129–137. https://doi.org/10.1016/j.addr.2016.01.022
  10. Kabilova T.O., Shmendel E.V., Gladkikh D.V., Chernolovskaya E.L., Markov O.V., Morozova N.G., Maslov M.A., Zenkova M.A. // Eur. J. Pharm. Biopharm. 2018. V. 123. P. 59–70. https://doi.org/10.1016/j.ejpb.2017.11.010
  11. Dilliard S.A., Siegwart D.J. // Nat. Rev. Mater. 2023. V. 8. P. 282–300. https://doi.org/10.1038/s41578-022-00529-7
  12. Lin D.H., Hoelz A. // Annu. Rev. Biochem. 2019. V. 88. P. 725–783. https://doi.org/10.1146/annurev-biochem-062917-011901
  13. Губанова Н.В., Морозова К.Н., Киселева Е.В. // Цитология. 2006. V. 11. P. 887–899.
  14. Roy S.M., Garg V., Sivaraman S.P., Barman S., Ghosh C., Bag P., Mohanasundaram P., Maji P.S., Basu A., Dirisala A., Ghosh S.K., Maitymit R. // J. Drug Deliv. Sci. Technol. 2023. V. 83. P. 104408. https://doi.org/10.1016/j.jddst.2023.104408
  15. Yao J., Fan Y., Li Y., Huang L. // J. Drug Target. 2013. V. 21. P. 926–939. https://doi.org/10.3109/1061186X.2013.830310
  16. Fontes M.R.M., Teh T., Kobe B. // J. Mol. Biol. 2000. V. 297. P. 1183–1194. https://doi.org/10.1006/jmbi.2000.3642
  17. Mashal M., Attia N., Maldonado I., Enríquez Rodríguez L., Gallego I., Puras G., Pedraz J.L. // Eur. J. Pharm. Biopharm. 2024. V. 201. P. 114385. https://doi.org/10.1016/j.ejpb.2024.114385
  18. Kurihara D., Akita H., Kudo A., Masuda T., Futaki S., Harashima H. // Biol. Pharm. Bull. 2009. V. 32. P. 1303–1306. https://doi.org/10.1248/bpb.32.1303
  19. Nematollahi M.H., Torkzadeh-Mahanai M., Pardakhty A., EbrahimiMeimand H.A., Asadikaram G. // Artif. Cells Nanomed. Biotechnol. 2018. V. 46. P. 1781–1791. https://doi.org/10.1080/21691401.2017.1392316
  20. Bishani A., Makarova D.M., Shmendel E.V., Maslov M.A., Sen’kova A.V., Savin I.A., Gladkikh D.V., Zenkova M.A., Chernolovskaya E.L. // Pharmaceutics. 2023. V. 15. P. 92184. https://doi.org/10.3390/pharmaceutics15092184
  21. Shmendel E.V., Bakhareva S.A., Makarova D.M., Chernikov I.V., Morozova N.G., Chernolovskaya E.L., Zenkova M.A., Maslov M.A. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 1250–1260. https://doi.org/10.1134/S106816202006031X
  22. Mornet E., Carmoy N., Lainé C., Lemiègre L., Le Gall T., Laurent I., Marianowski R., Férec C., Lehn P., Benvegnu T., Montier T. // Int. J. Mol. Sci. 2013. V. 14. P. 1477–1501. https://doi.org/10.3390/ijms14011477
  23. Wang S., Lee R.J., Cauchon G., Gorensteint D.G., Lowt P.S. // Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 3318–3322
  24. Xu Z., Jin J., Siu L.K.S., Yao H., Sze J., Sun H., Kung H., Poon W.S., Ng S.S.M., Lin M.C. // Int. J. Pharm. 2012. V. 426. P. 182–192. https://doi.org/10.1016/j.ijpharm.2012.01.009
  25. Jones S.K., Sarkar A., Feldmann D.P., Hoffmann P., Merkel O.M. // Biomaterials. 2017. V. 138. P. 35–45. https://doi.org/10.1016/j.biomaterials.2017.05.034
  26. van der Aa M.A.E.M., Koning G.A., d’Oliveira C., Oosting R.S., Wilschut K.J., Hennink W.E., Crommelin D.J.A. // J. Gene Med. 2005. V. 7. P. 208–217. https://doi.org/10.1002/jgm.643

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025