Ionizable Cationic Lipid for Intracellular RNA Delivery

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Ionizable lipids are a key component of the lipid nanoparticle platform for RNA therapy. They ensure the efficient assembly of a lipid–nucleic acid complex, protect it from premature degradation, and after endocytosis, promote the release of RNA into the cytoplasm for further processing. The paper describes the synthesis of a new ionizable cationic lipid that is a diglyceride derivative of tertiary alkylamine – [5-[1,2-di(decanoyloxy)propane-3-iloxy]pentyl-(4-hydroxybutyl)-amino]pentoxy]-2-decanoyloxypropyl] decanoate (An-1). The synthesis is characterized by the simplicity and cost-effectiveness of reagents. Comparative experiments with the well-known ionizable lipid ALC-0315 have shown that An-1 lipid forms lipid nanoparticles (LNPs) similar in size and incorporation efficiency of the model mRNA. LNPs with mRNA of the green fluorescent protein formulated with An-1 lipid transfected cells in culture more efficiently than LNPs formulated with ALC-0315 lipid. It is assumed that the new ionizable lipid can be used in the production of mRNA vaccines.

作者简介

K. Gaisin

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University, Faculty of Chemistry

Moscow, Russia; Moscow, Russia

E. Ryabukhina

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

D. Koroev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

I. Mikhalyov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

E. Zhuravlev

Institute of Chemical Biology and Fundamental Medicine SB RAS

Novosibirsk, Russia

G. Stepanov

Institute of Chemical Biology and Fundamental Medicine SB RAS

Novosibirsk, Russia

I. Boldyrev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Moscow, Russia

E. Vodovozova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: elvod.ibch@yandex.ru
Moscow, Russia

参考

  1. Cullis P.R., Felgner P.L. // Nat. Rev. Drug Discov. 2024. V. 23. P. 709–722. https://doi.org/10.1038/s41573-024-00977-6
  2. Han X., Mitchell M.J., Nie G. // Matter. 2020. V. 3. P. 1948–1975. https://doi.org/10.1016/j.matt.2020.09.020
  3. Han X., Zhang H., Butowska K., Swingle K.L., Alameh M.-G., Weissman D., Mitchell M.J. // Nat. Commun. 2021. V. 12. P. 7233. https://doi.org/10.1038/s41467-021-27493-0
  4. Semple S.C., Akinc A., Chen J., Sandhu A.P., Mui B.L., Cho C.K., Sah D.W., Stebbing D., Crosley E.J., Yaworski E., Hafez I.M., Dorkin J.R., Qin J., Lam K., Rajeev K.G., Wong K.F., Jeffs L.B., Nechev L., Eisenhardt M.L., Jayaraman M., Kazem M., Maier M.A., Srinivasulu M., Weinstein M.J., Chen Q., Alvarez R., Barros S.A., De S., Klimuk S.K., Borland T., Kosovrasti V., Cantley W.L., Tam Y.K., Manoharan M., Ciufolini M.A., Tracy M.A., de Fougerolles A., Mac-Lachlan I., Cullis P.R., Madden T.D., Hope M.J. // Nat. Biotechnol. 2010. V. 28. P. 172–176. https://doi.org/10.1038/nbt.1602
  5. Mrksich K., Padilla M.S., Mitchell M.J. // Adv. Drug Deliv. Rev. 2024. V. 214. P. 115446. https://doi.org/10.1016/j.addr.2024.115446
  6. European Medicines Agency, Comirnaty Assessment Report. COVID-19 mRNA vaccine (nucleoside-modified). https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf
  7. Jörgensen A.M., Wibel R., Bernkop-Schnürch A. // Small. 2023. V. 19. P. 2206968. https://doi.org/10.1002/smll.202206968
  8. Болдырев И.А., Шендриков В.П., Кислова С.О., Потешнова М.В., Андреев Д.Е., Рубцов Ю.П., Рубцова М.П., Водовозова Е.Л. // Патент RU2823298C1, 2024.
  9. Schoenmaker L., Witzigmann D., Kulkarni J.A., Verbeke R., Kersten G., Jiskoot W., Crommelin D.J.A. // Int. J. Pharm. 2021. V. 601. P. 120586. https://doi.org/10.1016/j.ijpharm.2021.120586
  10. Cheng X., Lee R.J. // Adv. Drug Deliv. Rev. 2016. V. 99. P. 129–137. https://doi.org/10.1016/j.addr.2016.01.022
  11. Münter R., Larsen J.B., Andresen T.L. // J. Colloid Interface Sci. 2024. V. 674. P. 139–144. https://doi.org/10.1016/j.jcis.2024.06.158
  12. Schultz D., Münter R.D., Cantín A.M., Kempen P.J., Jahnke N., Andresen T.L., Simonsen J.B., Urquhart A.J. // Eur. J. Pharm. Biopharm. 2024. V. 205. P. 114571. https://doi.org/10.1016/j.ejpb.2024.114571
  13. Zalba S., Ten Hagen T.L.M., Burgui C., Garrido M.J. // J. Control. Release. 2022. V. 351. P. 22–36. https://doi.org/10.1016/j.jconrel.2022.09.002
  14. Fedorovskiy A.G., Antropov D.N., Dome A.S., Puchkov P.A., Makarova D.M., Konopleva M.V., Matveeva A.M., Panova E.A., Shmendel E.V., Maslov M.A., Dmitriev S.E., Stepanov G.A., Markov O.V. // Pharmaceutics. 2024. V. 16. P. 684. https://doi.org/10.3390/pharmaceutics16050684

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025