Construct design, isolation and purification of the monomeric form of human GPCR GPR17 for structural and functional studies
- Autores: Safronova N.A.1, Luginina A.P.1, Sadova A.A.1, Shevtsov M.B.1, Moiseeva O.V.1, Borshchevskiy V.I.1, Mishin A.V.1
- 
							Afiliações: 
							- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (National Research University)
 
- Edição: Volume 51, Nº 1 (2025)
- Páginas: 82-93
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-3423/article/view/683099
- DOI: https://doi.org/10.31857/S0132342325010086
- EDN: https://elibrary.ru/LZDVJL
- ID: 683099
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
G protein-coupled receptors (GPCRs) are a family of heptahelical transmembrane proteins consisting of more than 800 representatives in the human genome that regulate most processes in the human body and are targets for up to a third of all modern drugs. Many GPCRs, despite their importance for pharmacology, are still considered orphan, i.e., their endogenous ligand is unknown. Orphan receptor GPR17, belonging to class A GPCR, is expressed mainly in the central nervous system, plays an important role in the formation of the myelin sheath of neurons and is a potential target for the development of new drugs against multiple sclerosis, Alzheimer's disease and ischemia. The aim of this work was to prepare GPR17 for structure-functional studies, starting with the heterologous expression and ending with obtaining a stable protein sample. Screening of various genetically engineered constructs was performed, a number of point mutations were analyzed, and a significant number of potential ligands of this receptor were tested. As a result of the work, the conditions for expression, isolation, and purification of GPR17 were optimized, which together made it possible to obtain a fairly stable and monomeric protein preparation suitable for further structural studies.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
N. Safronova
Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (National Research University)
							Autor responsável pela correspondência
							Email: mishinalexej@gmail.com
				                					                																			                												                	Rússia, 							Dolgoprudny						
A. Luginina
Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (National Research University)
														Email: mishinalexej@gmail.com
				                					                																			                												                	Rússia, 							Dolgoprudny						
A. Sadova
Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (National Research University)
														Email: mishinalexej@gmail.com
				                					                																			                												                	Rússia, 							Dolgoprudny						
M. Shevtsov
Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (National Research University)
														Email: mishinalexej@gmail.com
				                					                																			                												                	Rússia, 							Dolgoprudny						
O. Moiseeva
Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (National Research University)
														Email: mishinalexej@gmail.com
				                					                																			                												                	Rússia, 							Dolgoprudny						
V. Borshchevskiy
Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (National Research University)
														Email: mishinalexej@gmail.com
				                					                																			                												                	Rússia, 							Dolgoprudny						
A. Mishin
Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (National Research University)
														Email: mishinalexej@gmail.com
				                					                																			                												                	Rússia, 							Dolgoprudny						
Bibliografia
- Kuneš J., Hojná S., Mráziková L., Montezano A., Touyz R., Maletínská L. // Physiol Res. 2023. V. 72. P. S73–S90. https://doi.org/10.33549/physiolres.935109
- Marucci G., Dal Ben D., Lambertucci C., Martí Navia A., Spinaci A., Volpini R., Buccioni M. // Exp. Opin. Ther. Pat. 2019. V. 29. P. 85–95. https://doi.org/10.1080/13543776.2019.1568990
- Dziedzic A., Miller E., Saluk-Bijak J., Bijak M. // Int. J. Mol. Sci. 2020. V. 21. P. 1852. https://doi.org/10.3390/ijms21051852
- Ou Z., Sun Y., Lin L., You N., Liu X., Li H., Ma Y., Cao L., Han Y., Liu M., Deng Y., Yao L., Lu Q.R., Chen Y. // J. Neurosci. 2016. V. 36. P. 10560–10573. https://doi.org/10.1523/JNEUROSCI.0898-16.2016
- Yan S., Conley J.M., Reilly A.M., Stull N.D., Abhyankar S.D., Ericsson A.C., Kono T., Molosh A.I., Kubal C.A., Evans-Molina C., Ren H. // Cell Rep. 2022. V. 38. P. 110179. https://doi.org/10.1016/j.celrep.2021.110179
- Ren H., Cook J. R., Kon N., Accili D. // Diabetes. 2015. V. 64. P. 3670–3679. https://doi.org/10.2337/db15-0390
- Sriram K., Insel P.A. // Mol. Pharmacol. 2018. V. 93. P. 251–258. https://doi.org/10.1124/mol.117.111062
- Khorn P.A., Luginina A.P., Pospelov V.A., Dashevsky D.E., Khnykin A.N., Moiseeva O.V., Safronova N.A., Belousov A.S., Mishin A.V., Borshchevsky V.I. // Biochemistry (Moscow). 2024. V. 89. P. 747–764. https://doi.org/10.1134/S0006297924040138
- Ye F., Wong T., Chen G., Zhang Z., Zhang B., Gan S., Gao W., Li J., Wu Z., Pan X., Du Y. // MedComm (Beijing). 2022. V. 3. P. e159. https://doi.org/10.1002/mco2.159
- Van Montfort R.L.M., Workman P. // Essays Biochem. 2017. V. 61. P. 431–437. https://doi.org/10.1042/EBC20170052
- Chun E., Thompson A.A., Liu W., Roth C.B., Griffith M.T., Katritch V., Kunken J., Xu F., Cherezov V., Hanson M.A., Stevens R.C. // Structure. 2012. V. 20. P. 967–976. https://doi.org/10.1016/j.str.2012.04.010
- Гусач А.Ю. // Структурные исследования человеческого цистеинил-лейкотриенового рецептора второго типа для создания новых лекарственных препаратов. Дис. канд. физ.-мат. наук, МФТИ, Москва, 2020.
- Ballesteros J.A., Weinstein H. // Methods Neurosci. 1995. V. 25. P. 366–428. https://doi.org/10.1016/S1043-9471(05)80049-7
- Bläsius R., Weber R.G., Lichter P., Ogilvie A. // J. Neurochem. 1998. V. 70. P. 1357–1365. https://doi.org/10.1046/j.1471-4159.1998.70041357.x
- Cherezov V., Abola E., Stevens R.C. // Methods Mol. Biol. 2010. P. 141–168. https://doi.org/10.1007/978-1-60761-762-4_8
- Popov P., Peng Y., Shen L., Stevens R.C., Cherezov V., Liu Z.J., Katritch V. // Elife. 2018. V. 7. P. e34729. https://doi.org/10.7554/eLife.34729
- Alexandrov A.I., Mileni M., Chien E.Y.T., Hanson M.A., Stevens R.C. // Structure. 2008. V. 16. P. 351–359. https://doi.org/10.1016/j.str.2008.02.004
- Luginina A., Gusach A., Marin E., Mishin A., Brouillette R., Popov P., Shiriaeva A., Besserer-Offroy É., Longpré J.M., Lyapina E., Ishchenko A., Patel N., Polovinkin V., Safronova N., Bogorodskiy A., Edelweiss E., Hu H., Weierstall U., Liu W., Batyuk A., Gordeliy V., Han G. W., Sarret P., Katritch V., Borshchevskiy V., Cherezov V. // Sci. Adv. 2019. V. 5. P. eaax2518. https://doi.org/10.1126/sciadv.aax2518
- Ciana P., Fumagalli M., Trincavelli M.L., Verderio C., Rosa P., Lecca D., Ferrario S., Parravicini C., Capra V., Gelosa P., Guerrini U., Belcredito S., Cimino M., Sironi L., Tremoli E., Rovati G.E., Martini C., Abbracchio M.P. // EMBO J. 2006. V. 25. P. 4615–4627. https://doi.org/10.1038/sj.emboj.7601341
- Maekawa A., Balestrieri B., Austen K.F., Kanaoka Y. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 11685– 11690. https://doi.org/10.1073/pnas.0905364106
- Benned-Jensen T., Rosenkilde M.M. // Br. J. Pharmacol. 2010. V. 159. P. 1092–1105. https://doi.org/10.1111/j.1476-5381.2009.00633.x
- Qi A.D., Harden T.K., Nicholas R.A. // J. Pharmacol. Exp. Ther. 2013. V. 347. P. 38–46. https://doi.org/10.1124/jpet.113.207647
- Hennen S., Wang H., Peters L., Merten N., Simon K., Spinrath A., Blättermann S., Akkari R., Schrage R., Schröder R., Schulz D., Vermeiren C., Zimmermann K., Kehraus S., Drewke C., Pfeifer A., König G.M., Mohr K., Gillard M., Müller C.E., Lu Q.R., Gomeza J., Kostenis E. // Sci. Signal. 2013. V. 6. P. ra93. https://doi.org/10.1126/scisignal.2004350
- Merten N., Fischer J., Simon K., Zhang L., Schröder R., Peters L., Letombe A., Hennen S., Schrage R., Bödefeld T., Vermeiren C., Gillard M., Mohr K., Lu Q.R., Brüstle O., Gomeza J., Kostenis E. // Cell Chem. Biol. 2018. V. 25. P. 775–786.e5. https://doi.org/10.1016/j.chembiol.2018.03.012
- Simon K., Merten N., Schröder R., Hennen S., Preis P., Schmitt N., Peters L., Schrage R., Vermeiren C., Gillard M., Mohr K., Gomeza J., Kostenis E. // Mol. Pharmacol. 2017. V. 91. P. 518–532. https://doi.org/10.1124/mol.116.107904
- Harrington A.W., Liu C., Phillips N., Nepomuceno D., Kuei C., Chang J., Chen W., Sutton S.W., O’Malley D., Pham L., Yao X., Sun S., Bonaventure P. // Br. J. Pharmacol. 2023. V. 180. P. 401–421. https://doi.org/10.1111/bph.15969
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





