Mass spectrometric analysis of Xenopus laevis cytoskeletal protein zyxin post-translational modifications
- Autores: Ivanova E.D.1, Zyganshin R.H.2, Parshina E.A.2, Zaraisky A.G.2, Martynova N.Y.2
- 
							Afiliações: 
							- Pirogov Russian National Research Medical University
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
 
- Edição: Volume 51, Nº 3 (2025)
- Páginas: 388-397
- Seção: ОБЗОРНАЯ СТАТЬЯ
- URL: https://cardiosomatics.ru/0132-3423/article/view/686890
- DOI: https://doi.org/10.31857/S0132342325030027
- EDN: https://elibrary.ru/KPZTMP
- ID: 686890
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In addition to its involvement in fundamental cellular processes, zyxin, a LIM-domain protein in the cytoskeletal system, is actively studied because it plays an important role in mechanosensory functions, actin polymerization regulation at cell junctions, as well as gene expression regulation. The disruption of zyxin expression and processing has been associated with carcinogenesis and cardiovascular disease. Zyxin plays an important role in the invasion and metastasis of tumors. The post-translational modification of zyxin in mammals regulates its activity and subcellular location. Given that zyxin is an evolutionarily highly conserved protein, we conducted a search for post-translational modifications of the zyxin homolog from Xenopus laevis using chromatographic mass spectrometry. To identify modified peptides, an enrichment method was employed using co-immunoprecipitation of endogenous zyxin from gastrula-stage embryonic cell lysates. As a result, previously unknown modifications of this protein were discovered, specifically N-terminal acetylation at methionine position 1 and phosphorylation at Ser197 and Ser386. To identify zyxin isoforms with different electrophoretic mobilities, separation was performed using polyacrylamide gel electrophoresis. Zyxin was found in bands with electrophoretic mobilities of 70 and 105 kDa. Thus, this study presents entirely new data on the post-translational modifications of zyxin from X. laevis. Since defects in mechanical signal transduction are associated with developmental disorders, oncogenesis, and metastasis, the study of mechanosensitive protein zyxin modifications and processing on the model organism X. laevis opens up opportunities for diagnostic studies at the molecular level, which can be used in the future to determine drugs use prospective in pharmacology.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
E. Ivanova
Pirogov Russian National Research Medical University
														Email: martnat61@gmail.com
				                					                																			                												                	Rússia, 							ul. Ostrovitianova 1, Moscow, 117997						
R. Zyganshin
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
														Email: martnat61@gmail.com
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
E. Parshina
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
														Email: martnat61@gmail.com
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
A. Zaraisky
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
														Email: martnat61@gmail.com
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
N. Martynova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: martnat61@gmail.com
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
Bibliografia
- Beckerle M.C. // Bioessays. 1997. V. 19. V. 949−957. https://doi.org/10.1002/bies.950191104
- Hirata H., Tatsumi H., Sokabe M. // Commun. Integr. Biol. 2008. V. 1. P. 192–195. https://doi.org/10.4161/cib.1.2.7001
- Hirata H., Tatsumi H., Sokabe M. // J. Cell Sci. 2008. V. 121. P. 2795−2804. https://doi.org/10.1242/jcs.030320
- Nix D.A., Beckerle M.C. // J. Cell Biol. 1997. V. 138. P. 1139−1147. https://doi.org/10.1083/jcb.138.5.1139
- Moody J.D., Grange J., Ascione M.P., Boothe D., Bushnell E., Hansen M.D. // Biochem. Biophys. Res. Commun. 2009. V. 378. P. 625–628. https://doi.org/10.1016/j.bbrc.2008.11.100
- Zhou J., Zeng Y., Cui L., Chen X., Stauffer S., Wang Z., Yu F., Lele S.M., Talmon G.A., Black A.R., Chen Y., Dong J. // Proc. Natl. Acad. Sci. USA. 2018. V. 115. P. E6760−E6769. https://doi.org/10.1073/pnas.1800621115
- Zhao Y., Yue S., Zhou X., Guo J., Ma S., Chen Q. // J. Biol. Chem. 2022. V. 298. P. 101776. https://doi.org/10.1016/j.jbc.2022.101776
- Siddiqui M.Q., Badmalia M.D., Patel T.R. // Int. J. Mol. Sci. 2021. V. .22. P. 2647. https://doi.org/10.3390/ijms22052647
- Nix D.A., Fradelizi J., Bockholt S., Menichi B., Louvard D., Friederich E., Beckerle M.C. // J. Biol. Chem. 2001. V. 276. P. 34759−34767. https://doi.org/10.1074/jbc.M102820200
- Uemura A., Nguyen T.N., Steele A.N., Yamada S. // Biophys. J. 2011. V. 101. P. 1069−1075. https://doi.org/10.1016/j.bpj.2011.08.001
- Drees B.E., Andrews K.M., Beckerle M.C. // J. Cell Biol. 1999. V. 147. P. 1549−1560. https://doi.org/10.1083/jcb.147.7.1549
- Li B., Trueb B. // J. Biol. Chem. 2001. V. 276. P. 33328− 33335. https://doi.org/10.1074/jbc.M100789200
- Drees B., Friederich E., Fradelizi J., Louvard D., Beckerle M.C., Golsteyn R.M. // J. Biol. Chem. 2000. V. 275. P. 22503−22511. https://doi.org/10.1074/jbc.M001698200
- Golsteyn R.M., Beckerle M.C., Koay T., Friederich E. // J. Cell. Sci. 1997. V. 110. P. 1893−1906. https://doi.org/10.1242/jcs.110.16.1893
- Smith M.A., Hoffman L.M., Beckerle M.C. // Cell Biol. 2014. V. 24. P. 575−583. https://doi.org/10.1016/j.tcb.2014.04.009
- Martynova N.Y., Parshina E.A., Ermolina L.V., Zaraisky A.G. // Biochem. Biophys. Res. Commun. 2018. V. 504. P. 251–256. https://doi.org/10.1016/j.bbrc.2018.08.164
- Martynova N.Y., Ermolina L.V., Ermakova G.V., Eroshkin F.M., Gyoeva F.K., Baturina N.S., Zaraisky A.G. // Dev. Biol. 2013. V. 380. P. 37−48. https://doi.org/10.1016/j.ydbio.2013.05.005
- Li N., Goodwin R.L., Potts J.D. // Microsc. Microanal. 2013. V. 19. P. 842−854. https://doi.org/10.1017/S1431927613001633
- Hoffman L.M., Nix D.A., Benson B., Boot-Hanford R., Gustafsson E., Jamora C., Menzies A.S., Goh K.L., Jensen C.C., Gertler F.B., Fuchs E., Fässler R., Beckerle M.C. // Mol. Cell Biol. 2003. V. 23. P. 70−79. https://doi.org/10.1128/MCB.23.1.70−79.2003
- Rauskolb C., Pan G., Reddy B.V., Oh H., Irvine K.D. // PLoS Biol. 2011. V. 9. P. e1000624. https://doi.org/10.1371/journal.pbio.1000624
- Gaspar P., Holder M.V., Aerne B.L., Janody F., Tapon N. // Curr. Biol. 2015. V. 25. P. 679−689. https://doi.org/10.1016/j.cub.2015.01.010
- Martynova N.Y., Eroshkin F.M., Ermolina L.V., Ermakova G.V., Korotaeva A.L, Smurova K.M., Gyoeva F.K., Zaraisky A.G. // Dev. Dyn. 2008. V. 237. P. 736−749. https://doi.org/10.1002/dvdy.21471
- Martynova N.U., Ermolina L.V., Eroshkin F.M., Zarayskiy A.G. // Bioorg. Khim. 2015. V. 41. P. 744− 748. https://doi.org/10.1134/s1068162015060102
- Parshina E.A., Eroshkin F.M., Оrlov E.E., Gyoeva F.K., Shokhina A.G., Staroverov D.B., Belousov V.V., Zhigalova N.A., Prokhortchouk E.B., Zaraisky A.G., Martynova N.Y. // Cell Rep. 2020. V. 33. P. 108396. https://doi.org/10.1016/j.celrep.2020.108396
- Ivanova E.D., Parshina E.A., Zaraisky A.G. Martynova N.Y. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 723–732. https://doi.org/10.1134/S1068162024030026
- Aebersold R., Mann M. // Nature. 2003. V. 422. P. 198– 207. https://doi.org/10.1038/nature01511
- Mann M., Wilm M. // Anal. Chem. 1994. V. 66. P. 4390− 4399. https://doi.org/10.1021/ac00096a002
- Eng J.K., Searle B.C., Clauser K.R., Tabb D.L. // Mol. Cell Proteomics. 2011. V. 10. P. R111.009522. https://doi.org/10.1074/mcp.R111.009522
- Mann M., Ong S.E., Grønborg M., Steen H., Jensen O.N., Pandey A. // Trends Biotechnol. 2002. V. 20. P. 261−268. https://doi.org/10.1016/s0167−7799(02)01944−3
- Groen A., Thomas L., Lilley K., Marondedze C. // Methods Mol. Biol. 2013. V. 1016. P. 121−137. https://doi.org/10.1007/978-1-62703-441-8_9
- Maynard J.C., Chalkley R.J. // Mol. Cell Proteomics. 2021. V. 20. P. 100031. https://doi.org/10.1074/mcp.R120.002206
- Shevchenko A., Tomas H., Havlis J., Olsen J.V., Mann M. // Nat. Protoc. 2006. V. 1. P. 2856−2860. https://doi.org/10.1038/nprot.2006.468
- Ma B., Zhang K., Hendrie C., Liang C., Li M., DohertyKirby A., Lajoie G. // Rapid Commun. Mass Spectrom. 2003. V. 17. P. 2337−2342. https://doi.org/10.1002/rcm.1196
- Rappsilber J., Mann M., Ishihama Y. // Nat. Protoc. 2007. V. 2. P. 1896−1906. https://doi.org/10.1038/nprot.2007.261
- Nguyen K.T., Mun S.H., Lee C.S., Hwang C.S. // Exp. Mol. Med. 2018. V. 50. P. 1−8. https://doi.org/10.1038/s12276-018-0097-y
- Arnaudo N., Fernández I.S., McLaughlin S.H., PeakChew S.Y., Rhodes D., Martino F. // Nat. Struct. Mol. Biol. 2013. V. 20. P. 1119−1121. https://doi.org/10.1038/nsmb.2641
- Fujita Y., Yamaguchi A., Hata K., Endo M., Yamaguchi N., Yamashita T. // BMC Cell Biol. 2009. V. 27. P. 10− 16. https://doi.org/10.1186/1471-2121-10-6
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


