Synthesis of Halogen-Substituted [12]Mercuracarborands-4. Crystal Structure of {[(9,12-I2-C2B10H8-1,2-Hg)4]Cl}Na(H2O)n

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The reactions of the dilithium derivatives of 9,12-dihalogen-ortho-carboranes 1,2-Li2-C2B10H8-9,12-X2 (X = Cl, Br, I) with mercury chloride HgCl2 afford a number of complexes of the chloride ion with the halogen derivatives of [12] mercuracarborand-4: {[(9,12-X2-C2B10H8-1,2ʹ-Hg)4]Cl}Na · nH2O. The molecular crystal structure of the complex of the
[12]mercuracarborand-4 octaiodine derivative with the chloride ion is determined by X-ray diffraction. The substituents at the periphery of the mercury-containing macrocycle are found to exert a substantial effect on the macrocycle geometry leading to the transition from the planar to butterfly conformation, whose geometry is predetermined by a set of intermolecular interactions in the crystal.

全文:

受限制的访问

作者简介

K. Suponitsky

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kirshik@yahoo.com
俄罗斯联邦, Moscow

S. Anufriev

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: kirshik@yahoo.com
俄罗斯联邦, Moscow

A. Shmalko

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: kirshik@yahoo.com
俄罗斯联邦, Moscow

I. Sivaev

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: sivaev@ineos.ac.ru
俄罗斯联邦, Moscow

参考

  1. Frankland, E., Philos. Trans., 1852, vol. 142, p. 417. https://www.jstor.org/stable/108548
  2. Frankland, E., Ann., 1853, vol. 85, no. 3, p. 329. https://doi.org/10.1002/jlac.18530850308
  3. Frankland, E. and Duppa, B.F., J. Chem. Soc., 1863, vol. 16, p. 415. https://doi.org/10.1039/JS8631600415
  4. Frankland, E. and Duppa, B.F., Ann., 1864, vol. 130, no. 1, p. 104. https://doi.org/10.1002/jlac.18641300110
  5. Geier, D.A., King, P.G., Hooker, B.S., et al., Clin. Chim. Acta, 2015, vol. 444, p. 212. https://doi.org/10.1016/j.cca.2015.02.030
  6. Makarova, L.G. and Nesmeyanov, A.N., Methods of Elemento-organic Chemistry. Vol. 4. The Organic Compounds of Mercury, Amsterdam, 1967.
  7. Kuzʹmina, L.G. and Struchkov, Yu.T., Croat. Chem. Acta, 1984, vol. 57, no. 4, p. 701. https://hrcak.srce.hr/194141
  8. Sivaev, I.B. and Stogniy, M.Yu., Russ. Chem. Bull., 2019, vol. 68, no. 2, p. 217. https://doi.org/10.1007/s11172-019-2379-5
  9. Pearce, K.G., Dinoi, C., Schwamm, R.J., et al., Adv. Sci., 2023, vol. 10, no. 31, p. 2304765. https://doi.org/10.1002/advs.202304765
  10. Larock, R.C., Angew. Chem. Int. Ed., 1978, vol. 17, no. 1, p. 27. https://doi.org/10.1002/anie.197800271
  11. Taylor, T.J., Burress, C.N., and Gabbai, F.P., Organometallics, 2007, vol. 26, no. 22, p. 5252. https://doi.org/10.1021/om070125d
  12. Yakovenko, A.A., Gallegos, J.H., Antipin, M.Yu., and Timofeeva, T.V., Cryst. Growth Des., 2009, vol. 9, no. 1, p. 66. https://doi.org/10.1021/cg8006603
  13. Yakovenko, A.A., Gallegos, J.H., Antipin, M.Yu., et al., Cryst. Growth Des., 2011, vol. 11, no. 9, p. 3964. https://doi.org/10.1021/cg200547k
  14. Himmelspach, A., Zahres, M., and Finze, M., Inorg. Chem., 2011, vol. 50, no. 8, p. 3186. https://doi.org/10.1021/ic200330d
  15. Shur, V.B. and Tikhonova, I.A., Russ. Chem. Bull., 2003, vol. 52, no. 12, p. 2539. https://doi.org/10.1023/B:RUCB.0000019872.65342.9a
  16. Dolgushin, F.M. and Eremenko, I.L., Russ. Chem. Rev., 2021, vol. 90, no. 12, p. 1493. https://doi.org/10.1070/rcr4998
  17. Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Coord. Chem. Rev., 2022, vol. 469, p. 214636. https://doi.org/10.1016/j.ccr.2022.214636
  18. Loveday, O., Jover, J., and Echeverria, J., Inorg. Chem., 2022, vol. 61, no. 32, p. 12526. https://doi.org/10.1021/acs.inorgchem.2c00921
  19. Rozhkov, A.V., Katlenok, E.A., Zhmykhova, M.V., et al., Inorg. Chem. Front., 2023, vol. 10, no. 2, p. 493. https://doi.org/10.1039/D2QI02047E
  20. Wedge, T.J. and Hawthorne, M.F., Coord. Chem. Rev., 2003, vol. 240, nos. 1–2, p. 111. https://doi.org/10.1016/S0010-8545(02)00259-X
  21. Sivaev, I.B., Anufriev, S.A., and Shmalko, A.V., Inorg. Chim. Acta, 2023, vol. 547, p. 121339. https://doi.org/10.1016/j.ica.2022.121339
  22. Anufriev, S.A., Timofeev, S.V., Zhidkova, O.B., et al., Crystals, 2022, vol. 12, no. 9, 1251. https://doi.org/10.3390/cryst12091251
  23. Zhidkova, O.B., Druzina, A.A., Anufriev, S.A., et al., Molbank, 2022, vol. 2022, no. 1, p. M1347. https://doi.org/10.3390/M1347
  24. Zheng, Z., Jiang, W., Zinn, A.A., et al., Inorg. Chem., 1995, vol. 34, no. 8, p. 2095. https://doi.org/10.1021/ic00112a023
  25. Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Burlington: Butterworth-Heinemann, 2009.
  26. APEX2 and SAINT, Madison: Bruker AXS Inc., 2014.
  27. Sheldrick, G.M., Acta Cryst., Sect. C: Struct. Chem., 2015, vol. 71, no. 1, p. 3. https://doi.org/10.1107/S2053229614024218
  28. Bayer, M.J., Jalisatgi, S.S., Smart, B., et al., Angew. Chem. Int. Ed., 2004, vol. 43, no. 14, p. 1854. https://doi.org/10.1002/anie.200352899
  29. Zinn, A.A., Knobler, C.B., Harwell, D.E., and Hawthorne, M.F., Inorg. Chem., 1999, vol. 38, no. 9, p. 2227. https://doi.org/10.1021/ic9811244
  30. Yang, X., Knobler, C.B., Zheng, Z., and Hawthorne, M.F., J. Am. Chem. Soc., 1994, vol. 116, no. 16, p. 7142. https://doi.org/10.1021/ja00095a018
  31. Lee, H., Knobler, C.B., and Hawthorne, M.F., Angew. Chem. Int. Ed., 2001, vol. 40, no. 11, p. 2124. https://doi.org/10.1002/1521-3773(20010601)40:11 <2124::AID-ANIE2124>3.0.CO;2-W
  32. Zheng, Z., Knobler, C.B., Mortimer, M.D., et al., Inorg. Chem., 1996, vol. 35, no. 5, p. 1235. https://doi.org/10.1021/ic951069o
  33. Zheng, Z., Knobler, C.B., and Hawthorne, M.F., J. Am. Chem. Soc., 1995, vol. 117, no. 18, p. 5105. https://doi.org/10.1021/ja00123a012
  34. Puga, A.V., Teixidor, F., Sillanpaa, R., et al., Chem. Eur. J., 2009, vol. 15, no. 38, p. 9764. https://doi.org/10.1002/chem.200900926
  35. Suponitsky, K.Yu., Anisimov, A.A., Anufriev, S.A., et al., Crystals, 2021, vol. 11, no. 4, p. 396. https://doi.org/10.3390/cryst11040396
  36. Suponitsky, K.Yu., Anufriev, S.A., and Sivaev, I.B., Molecules, 2023, vol. 28, no. 2, p. 875. https://doi.org/10.3390/molecules28020875
  37. Lu, Z., Vanga, M., Li, S., et al., Dalton Trans., 2023, vol. 52, no. 13, p. 3964. https://doi.org/10.1039/D2DT03725D

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1

下载 (183KB)
3. Fig. 1. General view of the complex {[(9,12-I2-C2B10H8-1,2ʹ-Hg)4]Cl}- in the representation of atoms by ellipsoidal thermal vibrations with 50% probability. Given: numbering only for the symmetry-independent part of the macrocycle (a); side view of the macrocycle (b). The angle φ between the ‘butterfly wings’ is defined as the angle between the planes of the ortho-carborane nuclei drawn through the atoms C(1), C(2), B(9), B(12), Hg(1), Hg(2) (shown as green dashed lines)

下载 (483KB)
4. Fig. 2. Top left: fragment of the crystal packing of complex III (hydrogen atoms and water molecules are not shown). Top and bottom right: the most tightly bound dimeric associates. Intermolecular contacts are shown as dashed lines and their distances are given in Å

下载 (698KB)

版权所有 © Российская академия наук, 2024