Potassium, ytterbium(II), and samarium(III) alkoxide complexes containing the tris((2-dimethylaminomethyl)phenyl)methoxide ligand: synthesis and structures

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The reaction of tris((2-dimethylaminomethyl)phenyl)methanol ((2-Me2NCH2C6H4)3COH) with potassium hydride in THF at –35°C affords dimeric alkoxide {[(2-Me2NCH2C6H4)3CO]K(THF)}2 (I) in a yield of 90%. The reaction of compound I with YbI2(THF)2 (1 : 1, 25°C) gives the Yb(II) alkoxyiodide complex {[(2-Me2NCH2C6H4)3CO]Yb(μ-I)(THF)2}2 (II) in a yield of 57%. Complex II in the crystalline state is dimeric due to two bridging iodide ligands. Unlike the Yb(II) compound, the exchange reaction of complex I with SmI2(THF)2 (1 : 1, 25°C) in THF followed by the addition of dimethoxyethane (DME) involves the oxidation of the metal to form the trivalent samarium complex [(2-Me2NCH2C6H4)3CO]2SmI (III), which is isolated in a yield of 60%. The molecular structures of the complexes are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2259700 (I), 2259701 (II), and 2259702 (III)).

Texto integral

Acesso é fechado

Sobre autores

А. Selikhov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: trif@iomc.ras.ru
Rússia, Moscow; Nizhny Novgorod

G. Taranenko

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: trif@iomc.ras.ru
Rússia, Nizhny Novgorod

Yu. Nelyubina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: trif@iomc.ras.ru
Rússia, Moscow

А. Trifonov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Autor responsável pela correspondência
Email: trif@iomc.ras.ru
Rússia, Moscow

Bibliografia

  1. Lyubov D.M., Tolpygin A.O., Trifonov A.A. // Coord. Chem. Rev. 2019. V. 392. P. 83.
  2. Lu E., Chu J., Chen Y. // Acc. Chem. Res. 2018. V. 51. P. 557.
  3. Wang J., Sun C.-Y., Zheng Q. et al. // Chem Asian J. 2023. V. 18. P. e202201297.
  4. Fegler W., Venugopal A., Kramer M., Okuda J. // Angew. Chem. Int. Ed. 2015. V. 54. P. 1724.
  5. Chen W., Li J., Cui C. // Synlett. 2021. V. 32. P. 962.
  6. Trifonov A.A., Basalov I.V., Kissel A.A. // Dalton Trans. 2016. V. 45. P. 19172.
  7. Trifonov A.A., Lyubov D.M. // Coord. Chem. Rev. 2017. V. 340. P. 10.
  8. Lyubov D.M., Trifonov A.A. // Inorg. Chem. Front. 2021. V. 8. P. 2965.
  9. Khristolyubov D.O., Lyubov D.M., Trifonov A.A. // Russ. Chem. Rev. 2021. V. 90. P. 529.
  10. Selikhov A.N., Mahrova T.V., Cherkasov A.V. et al. // Organometallics. 2016. V. 35. P. 2401.
  11. Selikhov A.N., Shavyrin A.S., Cherkasov A.V. et al. // Organometallics. 2019. V. 38. P. 4615.
  12. Basalov I.V., Roşca S.C., Lyubov D.M. et al. // Inorg. Chem. 2014. V. 53. P. 1654.
  13. Selikhov A.N., Mahrova T.V., Cherkasov A.V. et al. // Chem. Eur. J. 2017. V. 23. P. 1436.
  14. Basalov I.V., Lyubov D.M. et al. // Organometallics. 2013. V. 32. P. 1507.
  15. Richardson G.M., Douair I., Cameron S.A. et al. // Chem. Eur. J. 2021. V. 27. P. 13144.
  16. Wen Q., Rajeshkumar T., Maron L. et al. // Angew. Chem. Int. Ed. 2022. V. 61. P. e202200540.
  17. Morss L.R. // Chem. Rev. 1976. V. 76. P. 827.
  18. Mikheev N.B. // Inorg. Chim. Acta. 1984. V. 94. P. 241.
  19. Schumann H., Meese-Marktscheffel J.A., Esser L. // Chem. Rev. 1995. V. 95. P. 865.
  20. Evans W.J. // Inorg. Chem. 2007. V. 46. P. 3435.
  21. Arndt S., Okuda J. // Chem. Rev. 2002. V. 102. P. 1953.
  22. Wedal J.C., Evans W.J. // J. Am. Chem. Soc. 2021. V. 143. P. 18354.
  23. Woen D.H., Kotyk C.M., Mueller T.J. et al. // Organometallics. 2017. V. 36. P. 4558.
  24. Nishiura M., Guo F., Hou Z. // Acc. Chem. Res. 2015. V. 48. P. 2209.
  25. Akhnouk T., Müller J., Qiao K. et al. // J. Organomet. Chem. 1991. V. 408. P. 47.
  26. Stern D., Sabat M., Marks T.J. // J. Am. Chem. Soc. 1990. V. 112. P. 9558.
  27. Desurmont G., Li Y., Yasuda H. et al. // Organometallics. 2000. V. 19. P. 1811.
  28. Heckmann G., Niemeyer M. // J. Am. Chem. Soc. 2000. V. 122. P. 4227.
  29. Selikhov A.N., Lyubov D.M., Mahrova T.V. et al. // Russ. Chem. Bull. (Int. Ed.). 2020. V. 69. P. 1085.
  30. Zhang Z., Cui D., Trifonov A.A. // Eur. J. Inorg. Chem. 2010. P. 2861.
  31. Arnold P.L., Turner Z.R., Bellabarba R., Tooze R.P. // J. Am. Chem. Soc. 2011. V. 133. P. 11744.
  32. Arnold P.L., Marr I.A., Zlatogorsky S. et al. // Dalton Trans. 2014. V. 43. P. 34.
  33. Elvidge B.R., Arndt S., Spaniol T.P., Okuda J. // Dalton Trans. 2006. P. 890.
  34. Taranenko G.R., Selikhov A.N., Nelyubina Yu.V., Trifonov A.A. // Mendeleev Commun. 2022. V. 32. P. 777.
  35. Girard P., Namy J.-L., Kagan H.B. // J. Am. Chem. Soc. 1980. V. 102. P. 2693.
  36. Lyle S.J., Rahman M.M. // Talanta. 1963. V. 10. P. 1177.
  37. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  38. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339.
  39. Boyle T.J., Andrews N.L., Rodriguez M.A. et al. // Inorg. Chem. 2003. V. 42. P. 5357.
  40. Chilsholm M.H., Drake S.R., Naiini A.A., Streib W.E. // Polyhedron. 1991. V. 10. № 3. P. 337.
  41. Kaiser M., Klett J. // Dalton Trans. 2018. V. 47. P. 12582.
  42. Veith M., Belot C., Huch V. et al. // Z. Anorg. Allg. Chem. 2010. V. 636. P. 2262.
  43. Van Den Hende J.R., Hitchcock P.B., Holmes S.A. et al. // Dalton Trans. 1995. P. 3933.
  44. Morissette M., Haufe S., McDonald R. et al. // Polyhedron. 2004. V. 23. P. 263.
  45. Hitchcock P.B., Holmes S.A., Lappert M.F., Tian S. // Chem. Commun. 1994. P. 2691.
  46. Duncalf D.J., Hitchcock P.B., Lawless G.A. // Chem. Comrnun. 1996. P. 269.
  47. Selikhov A.N., Mahrova T.V., Cherkasov A.V. et al. // Organometallics. 2015. V. 34. P. 1991.
  48. Constantine S.P., De Lima G.M., Hitchcock P.B. et al. // Chem. Commun. 1996. P. 2421.
  49. Schultz M. // Acta Crystallogr. E. 2008. V. 64. P. m232.
  50. Werner D., Deacon G.B., Junk P.C. // Eur. J. Inorg. Chem. 2018. P. 2241.
  51. Trifonov A.T., Spaniol T.P., Okuda J. // Eur. J. Inorg. Chem. 2003. P. 926.
  52. Fedushkin I.L. // Organometallics. 2000. V. 19. P. 4066.
  53. Bochkarev M.N., Zakharov L.N., Kalinina C.S. Organoderivatives of Rare Earth Elements. Dordrecht: Kluwer Academic Publishers, 1995.
  54. Arnold P.L., Liddle S.T. // Organometallics. 2006. V. 25. P. 1485.
  55. Li J., Zhao C., Liu J. et al. // Inorg. Chem. 2016. V. 55. P. 9105.
  56. Duncalf D.J., Hitchcock P.B., Lawless G.A. // Chem. Commun. 1996. P. 269.
  57. Trifonov A.A., Weghe P. Van, Collin J. et al. // J. Organomet. Chem. 1997. V. 527. P. 225.
  58. Mironova O.A., Sukhikh T.S., Konchenko S.N., Pushkarevsky N.A. // Polyhedron. 2019. V. 159. P. 337.
  59. Cole M.L., Deacon G.B., Junk P.C., Wang J. // Organometallics. 2013. V. 32. P. 1370.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1.

Baixar (127KB)
3. Scheme 2.

Baixar (199KB)
4. Fig. 1. General view of complex I. Here and below, the atoms are represented by thermal vibration ellipsoids (p = 30%), the hydrogen atoms and CH2 groups of THF molecules are not shown for clarity, and the numbering is given only for symmetrically independent heteroatoms. The oxygen atoms O(1S) of THF molecules are marked as THF. The molecule of the complex in the crystal occupies a special position - the inversion center located in the geometric center of the K2O2 cycle.

Baixar (162KB)
5. Fig. 2. General view of complex II. Oxygen atoms O(1S) and O(2S) of THF molecules are marked as THF. The molecule of the complex in the crystal occupies a special position - the inversion center, located in the geometric center of the Yb2I2 cycle.

Baixar (93KB)
6. Fig. 3. General view of complex III.

Baixar (149KB)

Declaração de direitos autorais © Российская академия наук, 2024