Effect of the Solvent Nature on a Spin Equilibrium in the Solutions of the Phenylboron-Capped Hexa-n-Butylsulfide Cobalt(II) Clathrochelate Stadied by the Paramagnetic NMR Spectroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A spin state of the phenylbon-capped hexa-n-butylsulfide cobalt(II) clathrochelate in solutions was studied by paramagnetic NMR spectroscopy. This cage complex is found to undergo the temperature – induced spin crossover in solvents of different nature (acetonitrile, chloroform, dichloromethane, and benzene). The previously developed method for an analysis of paramagnetic shifts in NMR spectra allows to calculate of the thermodynamic parameters (enthalpy and entropy) of a given spin equilibrium in the solutions. In spite of the conformational rigidity of the macrobicyclic tris-α-dioximate molecules, the substantial changes in their electronic structures and spin crossover parameters were observed, being affected by a polarity of the solvent used. This provides an opportunity for the fine tuning of spin switch characteristics by changing this medium parameter.

Full Text

Restricted Access

About the authors

D. Yu. Aleshin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Bauman Moscow State Technical University

Email: a.pavlov@emtc.ru
Russian Federation, Moscow; Moscow

V. V. Zlobina

Moscow Institute of Physics and Technology (National Research University)

Email: a.pavlov@emtc.ru
Russian Federation, Dolgoprudnyi, Moscow oblast

A. S. Belov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: a.pavlov@emtc.ru
Russian Federation, Moscow

Ya. Z. Voloshin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: a.pavlov@emtc.ru
Russian Federation, Moscow

A. A. Pavlov

Bauman Moscow State Technical University; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Author for correspondence.
Email: a.pavlov@emtc.ru
Russian Federation, Moscow; Moscow

References

  1. Gamez P., Costa J. S., Quesada M. et al. // Dalton Trans. 2009. № 38. P. 7845.
  2. Kumar K. S., Ruben M. // Angew. Chem. Int. Ed. 2021. V. 60. № 14. P. 7502.
  3. Lefter C., Davesne V., Salmon L. et al. // Magnetochemistry. 2016. V. 2. № 1. P. 18.
  4. Manrique-Juarez M.D., Rat S., Salmon L. et al. // Coord. Chem. Rev. 2016. V. 308. P. 395.
  5. Jeon I.-R., Park J. G., Haney C. R. et al. // Chem. Sci. 2014. V. 5. № 6. C. 2461.
  6. Gentili D., Demitri N., Schäfer B. et al. // J. Mater. Chem. C. 2015. V. 3. № 30. P. 7836.
  7. Tissot A., Kesse X., Giannopoulou S. et al. // Chem. Commun. 2019. V. 55. № 2. P. 194.
  8. Wei R.-J., Tao J., Huang R.-B. et al. // Inorg. Chem. 2011. V. 50. № 17. P. 8553.
  9. Lada Z. G., Andrikopoulos K. S., Mathioudakis G. N. et al. // Magnetochemistry. 2022. V. 8. № 2. P. 16.
  10. Clemente-Juan J.M., Coronado E., Gaita-Ariño A. // Chem. Soc. Rev. 2012. V. 41. № 22. P. 7464.
  11. Bousseksou A., Boukheddaden K., Goiran M. et al. // Phys. Rev. B. 2002. V. 65. № 17. P. 172412.
  12. Gütlich P., Ksenofontov V., Gaspar A. B. // Coord. Chem. Rev. 2005. V. 249. № 17–18. P. 1811.
  13. Ohkoshi S.-i., Hashimoto K. // J. Photochem. Photobiol. 2001. V. 2. № 1. P. 71.
  14. Hosokawa H., Funasako Y., Mochida T. // Chem. Eur. J. 2014. V. 20. № 46. P. 15014.
  15. Halcrow M. A. // Coord. Chem. Rev. 2009. V. 253. № 21–22. P. 2493.
  16. Halcrow M. A. // Crystals. 2016. V. 6. № 5. P. 58.
  17. Krivokapic I., Zerara M., Daku M. L. et al. // Coord. Chem. Rev. 2007. V. 251. № 3–4. P. 364.
  18. Hayami S., Komatsu Y., Shimizu T. et al. // Coord. Chem. Rev. 2011. V. 255. № 17–18. P. 1981.
  19. Voloshin Y. Z., Kostromina N. A., Krämer R. Clathrochelates: Synthesis, Structure and Properties. Elsevier, 2002. 419 p.
  20. Voloshin Y., Belaya I., Krämer R. Cage Metal Complexes: Clathrochelates Revisited. Springer, 2017. 467 p.
  21. Novikov V. V., Pavlov A. A., Belov A. S. et al.// J. Phys. Chem. Lett. 2014. V. 5. № 21. P. 3799–3803.
  22. Voloshin Y. Z., Novikov V. V., Nelyubina Y. V. // RSC Adv. 2015. V. 5. № 89. P. 72621.
  23. Novikov V. V., Pavlov A. A., Nelyubina Y. V. et al. // J. Am. Chem. Soc. 2015. V. 137. № 31. P. 9792.
  24. Novikov V. V., Ananyev I. V., Pavlov A. A. et al. // J. Phys. Chem. Lett. 2014. V. 5. № 3. P. 496.
  25. Pavlov A. A., Nelyubina Y. V., Kats S. V. et al. // J. Phys. Chem. Lett. 2016. V. 7. № 20. P. 4111.
  26. Novikov V. V., Pavlov A. A., Nehrkorn J. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 756. https://doi.org/10.1134/S1070328420110056
  27. Voloshin Y. Z., Varzatskii O. A., Novikov V. V. et al. // Eur. J. Inorg. Chem. 2010. P. 5401.
  28. Pavlov A. A., Denisov G. L., Kiskin M. A. et al // Inorg. Chem. 2017. V. 56. № 24. P. 14759.
  29. Pavlov A. A., Aleshin D., Nikovskiy I. A. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 23. P. 2819.
  30. Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. № 1. P. 73.
  31. Perdew J. P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. C. 3865.
  32. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. T. 7. № 18. P. 3297.
  33. Kossmann S., Neese F. // Chem. Phys. Lett. 2009. T. 481. № 4–6. P. 240.
  34. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
  35. Rodriguez‐Castañeda F., Haberz P., Leonov A. et al.// Magn Reson Chem. 2006. V. 44. № S1. P. S10.
  36. Pavlov A. A., Novikov V. V., Nikovskiy I. A. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. № 2. P. 1167.
  37. Pavlov A. A., Nehrkorn J., Zubkevich S. V. et al. // Inorg. Chem. 2020. V. 59. № 15. P. 10746–10755.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1.

Download (109KB)
3. Fig. 1. NMR spectra of the 1H solution of complex I in CDCl3 recorded in the temperature range 225-330 K.

Download (108KB)
4. Fig. 2. Temperature dependence of chemical shifts in the 1H NMR spectra of complex I in various solvents: CDCl3 (a), CD3CN (b), C6D6 (c) and CD2Cl2 (d). Data for the following protons of its macrobicyclic molecule are shown: ortho-Ph (●), meta-Ph (■) and the pair is Ph (?). The solid lines correspond to the approximation using equation (9).

Download (138KB)
5. Fig. 3. Dependence of the population of the high-spin state of complex I in CDCl3 (black), CD3CN (red), C6D6 (green) and CD2Cl2 (blue).

Download (87KB)
6. Fig. 4. The effect of the dielectric constant of the solvent on the enthalpy ΔH and the half-transition temperature T1/2 of spin equilibrium in solutions of complex I in CDCl3 (α), CD3CN (β), C6D6 (■) and CD2Cl2 (●).

Download (40KB)

Copyright (c) 2024 Российская академия наук