Lanthanide (Sm, Dy) Complexes with the 9,10-Phenanthrenediimine Redox-Active Ligand: Synthesis and Structures
- Authors: Sinitsa D.K.1, Akimkina D.P.1,2, Sukhikh T.S.1, Konchenko S.N.1, Pushkarevskii N.A.1
- 
							Affiliations: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch
- Novosibirsk State University
 
- Issue: Vol 50, No 2 (2024)
- Pages: 124-137
- Section: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667621
- DOI: https://doi.org/10.31857/S0132344X24020078
- EDN: https://elibrary.ru/ORFUQM
- ID: 667621
Cite item
Abstract
The complex formation of the redox-active ligand bis(N, N’-2,6-diisopropylphenyl)-9,10-phenanthrenediimine (DippPDI) with alkaline metal (Li, K) and lanthanide (Sm, Dy) cations is studied. The reduction of DippPDI with an alkaline metal excess affords the dianionic form of the ligand (DippPDA2–), which crystallizes with the potassium cation as the coordination polymer [K2(DippPDA)(Thf)3] (Thf is tetrahydrofuran, THF). The reaction of equimolar amounts of the lithium salt with the dianionic form of the ligand and neutral diimine affords the lithium complex with the radical-anion form (DippPSI•–) crystallized as [Li(DippPSI)(Thf)2]. The samarium(III) complex [SmCp*(DippPDA)(Тhf)] (I) is formed by the reduction ofDippPDI with samarocene [Sm (Thf)2] (Cp* is pentamethylcyclopentadienide): both the samarium(II) cation and Cp*– anion are oxidized in the reaction.DippPDI does not react with similar ytterbocene. The dysprosium(III) complexes are synthesized by the ion exchange reactions between DyI3(Thf)3.5 and potassium or lithium salt with theDippPDA2-dianion. Similar complexes [Dy(DippPDA)I(Thf)2] (IIThf) and [Dy(DippPDA)I(Thf)(Et2O)] () are formed in the reactions with the potassium salt depending on the solvent used: a THF-hexane or a diethyl ether-n-hexane mixture, respectively. The coordination of the dysprosium cation by the π system of the conjugated fragment of the NCCN ligand is observed in IIThf, whereas in this coordination is absent. The reaction with Li2(DippPDA) affords the binary complex salt [Li(Тhf)3(Et2O)][DyI2(DippPDA)(Тhf)] (III, crystallization from a THF-Et2O mixture). The crystallization from THF gives the [Li(Тhf)4][DyI2(DippPDA)(Thf)] salt (III') containing the same anion as III. The structures of all new complexes are studied by X-ray diffraction (XRD, CIF files CCDC nos. 2260307–2260313).
Full Text
 
												
	                        About the authors
D. K. Sinitsa
Nikolaev Institute of Inorganic Chemistry, Siberian Branch
							Author for correspondence.
							Email: sinitsa@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk						
D. P. Akimkina
Nikolaev Institute of Inorganic Chemistry, Siberian Branch; Novosibirsk State University
														Email: sinitsa@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk; Novosibirsk						
T. S. Sukhikh
Nikolaev Institute of Inorganic Chemistry, Siberian Branch
														Email: sinitsa@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk						
S. N. Konchenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch
														Email: sinitsa@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk						
N. A. Pushkarevskii
Nikolaev Institute of Inorganic Chemistry, Siberian Branch
														Email: sinitsa@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk						
References
- Kaim W. // Inorg. Chem. 2011. V. 50. № 20. P. 9752.
- Tezgerevska T., Alley K. G., Boskovic C. // Coord. Chem. Rev. 2014. V. 268. P. 20.
- Wada T., Tanaka K., Muckerman J. T., Fujita E. // Mol. Water Oxid. Catal. 2014. P. 77.
- Kobayashi K., Ohtsu H., Wada T. et al. // J. Am. Chem. Soc. 2003. V. 125. № 22. P. 6729.
- Lippert C. A., Arnstein S. A., Sherrill C. D., Soper J. D. // J. Am. Chem. Soc. 2010. V. 132. № 11. P. 3879.
- Abakumov G. A., Poddel’sky A.I., Grunova E. V. et al. // Angew. Chem. Int. Ed. 2005. V. 44. № 18. P. 2767.
- Bruni S., Caneschi A., Cariati F. et al. // J. Am. Chem. Soc. 1994. V. 116. № 4. P. 1388.
- Bubnov M. P., Kozhanov K. A., Skorodumova N. A. et al. // J. Mol. Struct. 2019. V. 1180. P. 878.
- Piskunov A. V., Lado A. V. Fukin G. K. et al. // Heteroat. Chem. 2006. V. 17. № 6. P. 481.
- Kabachnik M. I., Bubnov N. N., Solodovnikov S. P., Prokof’ev A.I. // Russ. Chem. Rev. 1984. V. 53. № 3. P. 288.
- Hay M. A., Boskovic C. // Chem. A Eur. J. 2021. V. 27. № 11. P. 3608.
- Pushkarevsky N. A., Ogienko M. A., Smolentsev A. I. et al. // Dalton Trans. 2016. V. 45. № 3. P. 1269.
- Kuzyaev D. M., Vorozhtsov D. L., Druzhkov N. O. et al. // J. Organomet. Chem. 2012. V. 698. P. 35.
- Caneschi A., Dei A., Gatteschi D. et al. // Dalton Trans. 2004. № 7. P. 1048.
- Klementyeva S. V., Lukoyanov A. N., Afonin M. Y. et al. // Dalton Trans. 2019. V. 48. № 10. P. 3338.
- Coughlin E. J., Zeller M., Bart S. C. // Angew. Chem. Int. Ed. 2017. V. 56. № 40. P. 12142145.
- Maleev A. A., Trofimova O. Y., Pushkarev A. P. et al. // Nanotechnologies Russ. 2015. V. 10. № 7–8. P. 613.
- Sinitsa D. K., Sukhikh T. S., Konchenko S. N., Pushkarevsky N. A. // Polyhedron. 2021. V. 195. P. 114967.
- Subhedar Y., Ramachandra V. // Asian J. Chem. 1994. V. 6. № 2. P. 277.
- Ramachandra V., Patil B. // Curr. Sci. 1976. V. 45. № 19. P. 686.
- Su J., He F., Qi X., Wang J. // Huaxue Yu Shengwu Gongcheng. 2011. V. 28. № 4. P. 36.
- Schoo C., Bestgen S., Egeberg A. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 13. P. 4386.
- Reinfandt N., Michenfelder N., Schoo C. et al. // Chem. Eur. J. 2021. V. 27. № 29. P. 7862.
- Trifonov A. A., Shestakov B. G., Lyssenko K. A. et al. // Organometallics. 2011. V. 30. № 18. P. 4882.
- Fedushkin I. L., Yambulatov D. S., Skatova A. A. et al. // Inorg. Chem. 2017. V. 56. № 16. P. 9825.
- Fedushkin I. L., Maslova O. V., Baranov E. V., Shavyrin A. S. // Inorg. Chem. 2009. V. 48. № 6. P. 2355.
- Fedushkin I. L., Maslova O. V., Morozov A. G. et al. // Angew. Chem. Int. Ed. 2012. V. 51. № 42. P. 105847.
- Groom C. R., Bruno I. J., Lightfoot M. P., Ward, S.C. // Acta Crystallogr. B. 2016. V. 72. № 2. P. 171.
- Evans W. J., Grate J. W., Choi H. W. et al. // J. Am. Chem. Soc. 1985. V. 107. № 18. P. 941.
- Mironova O. A., Sukhikh T. S., Konchenko S. N., Pushkarevsky N. A. // Polyhedron. 2019. V. 159. P. 337.
- Cherkasov V. K., Druzhkov N. O., Kocherova T. N. et al. // Tetrahedron. 2012. V. 68. № 5. P. 1422.
- Sheldrick G. M. // Acta Crystallogr. Sect. A. 2015. V. 71. № 1. P. 3–8.
- Sheldrick G. M. // Acta Crystallogr. Sect. C. 2015. V. 71. № 1. P. 3–8.
- Dolomanov O. V., Bourhis L. J., Gildea R. J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
- Veauthier J. M., Schelter E. J., Carlson C. N. et al. // Inorg. Chem. 2008. V. 47. № 13. P. 5841.
- Abakumov G. A., Druzhkov N. O., Kocherova T. N. et al. // Dokl. Chem. 2016. V. 467. № 2. P. 109.
- Duraisamy R., Liebing P., Harmgarth N. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 28. P. 3343.
- Gao B., Luo X., Gao W. et al. // Dalton Trans. 2012. V. 41. № 9. P. 2755.
- Mironova O. A., Sukhikh T. S., Konchenko S. N., Pushkarevsky N. A. // Inorg. Chem. 2022. V. 61. № 39. P. 15484.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted









