Heteroleptic Zn(II) Halide Complexes with Iodine-Substituted Benzonitriles: Peculiarities of the Halogen Bond in the Solid State
- 作者: Vershinin M.A.1, Novikov A.S.2, Sokolov M.N.1, Adonin S.A.1
-
隶属关系:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch
- St. Petersburg State University
- 期: 卷 50, 编号 1 (2024)
- 页面: 3-10
- 栏目: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667623
- DOI: https://doi.org/10.31857/S0132344X24010011
- EDN: https://elibrary.ru/OSYDXU
- ID: 667623
如何引用文章
详细
The reactions of zinc(II) bromide with 3- and 4-iodobenzonitriles (3-I-BzCN and 4-I-Bz-CN) afford heteroligand complexes [L2ZnBr2] (L = 3-I-BzCN (I) and 4-I-BzCN (II)), whose structures are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2253175 (I) and 2253176 (II)). Both crystal structures contain halogen bonds I···Br linking the [ZnBr2L2] fragments into supramolecular layers (I) or chains (II). The energies of these noncovalent interactions are estimated by quantum-chemical calculations.
作者简介
M. Vershinin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch
Email: adonin@niic.nsc.ru
俄罗斯联邦, Novosibirsk
A. Novikov
St. Petersburg State University
Email: adonin@niic.nsc.ru
俄罗斯联邦, St. Petersburg
M. Sokolov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch
Email: adonin@niic.nsc.ru
俄罗斯联邦, Novosibirsk
S. Adonin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch
编辑信件的主要联系方式.
Email: adonin@niic.nsc.ru
俄罗斯联邦, Novosibirsk
参考
- Desiraju G.R., Ho P. S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1711. https://doi.org/10.1351/PAC-REC-12–05–10
- Bartashevich E.V., Sobalev S. A., Matveychuk Y. V. et al. // J. Struct. Chem. 2021. V. 62. № 10. P. 1607. https://doi.org/10.1134/S0022476621100164
- Novikov A.S., Gushchin A. L. // J. Struct. Chem. 2021. V. 62. № 9. P. 1325. https://doi.org/10.1134/S0022476621090018
- Matveychuk Y.V., Ilkaeva M. V., Vershinina E. A. et al. // J. Mol. Struct. 2016. V. 1119. P. 227. https://doi.org/10.1016/j.molstruc.2016.04.072
- Bartashevich E.V., Grigoreva E. A., Yushina I. D. et al. // Russ. Chem. Bull. 2017. V. 66. № 8. P. 1345. https://doi.org/10.1007/s11172–017–1898–1
- Bol’shakov O.I., Yushina I. D., Stash A. I. et al. // Struct. Chem. 2020. V. 31. № 5. P. 1729. https://doi.org/10.1007/s11224-020-01584-y
- Bartashevich E.V., Stash A. I., Batalov V. I. et al. // Struct. Chem. 2016. V. 27. № 5. P. 1553. https://doi.org/10.1007/s11224-016-0785-y
- Bartashevich E.V., Pendás Á. M., Tsirelson V. G. // Phys. Chem. Chem. Phys. 2014. V. 16. № 31. P. 16780. https://doi.org/10.1039/c4cp01257g
- Kolář M.H., Hobza P. // Chem. Rev. 2016. V. 116. № 9. P. 5155. https://doi.org/10.1021/acs.chemrev.5b00560
- Metrangolo P., Neukirch H., Pilati T. et al. // Acc. Chem. Res. 2005. V. 38. № 5. P. 386. https://doi.org/10.1021/ar0400995
- Katlenok E.A., Haukka M., Levin O. V. et al. // Chem. Eur. J. 2020. V. 26. № 34. P. 7692. https://doi.org/10.1002/chem.202001196
- Torubaev Y.V., Skabitsky I. V. // CrystEngComm. 2020. V. 22. № 40. P. 6661. https://doi.org/10.1039/d0ce01093f
- Rozhkov A.V., Novikov A. S., Ivanov D. M. et al. // Cryst. Growth Des. 2018. V. 18. № 6. P. 3626. https://doi.org/10.1021/acs.cgd.8b00408
- Kryukova M.A., Sapegin A. V., Novikov A. S. et al. // Crystals. 2020. V. 10. № 5. https://doi.org/10.3390/cryst10050371
- Eliseeva A.A., Ivanov D. M., Novikov A. S. et al. // CrystEngComm. 2019. V. 21. № 4. P. 616. https://doi.org/10.1039/c8ce01851k
- Bokach N.A., Suslonov V. V., Eliseeva A. A. et al. // CrystEngComm. 2020. V. 22. № 24. P. 4180. https://doi.org/10.1039/c6ra90077a
- Eliseeva A.A., Ivanov D. M., Rozhkov A. V. et al. // J. Am. Chem. Soc. 2021. V. 1. № 3. P. 354. https://doi.org/10.1021/jacsau.1c00012
- Zelenkov L.E., Ivanov D. M., Avdontceva M. S. et al. // Z. Krist. Cryst. Mater. 2019. V. 234. № 1. P. 9. https://doi.org/10.1515/zkri-2018–2111
- Novikov A.S., Ivanov D. M., Avdontceva M. S. et al. // CrystEngComm. 2017. V. 19. № 18. P. 2517. https://doi.org/10.1039/C7CE00346C
- Cheranyova A.M., Ivanov D. M. // Crystals. 2021. V. 11. № 7. https://doi.org/10.3390/cryst11070835
- Torubaev Y.V., Skabitskiy I. V., Pavlova A. V. et al. // New J. Chem. 2017. V. 41. № 9. P. 3606. https://doi.org/10.1039/C6NJ04096A
- Shestimerova T.A., Yelavik N. A., Mironov A. V. et al. // Inorg. Chem. 2018. V. 57. № 7. P. 4077. https://doi.org/10.1021/acs.inorgchem.8b00265
- Eich A., Köppe R., Roesky P. W. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 9. P. 1292. https://doi.org/10.1002/ejic.201900018
- Bykov A.V., Shestimerova T. A., Bykov M. A. et al. // Int. J. Mol. Sci. 2023. V. 24. № 3. P. 2201. https://doi.org/10.3390/ijms24032201
- Shestimerova T.A., Golubev N. A., Yelavik N. A. et al. // Cryst. Growth Des. 2018. V. 18. № 4. P. 2572. https://doi.org/10.1021/acs.cgd.8b00179
- Suslonov V.V., Soldatova N. S., Ivanov D. M. et al. // Cryst. Growth Des. 2021. V. 21. № 9. P. 5360. https://doi.org/10.1021/acs.cgd.1c00654
- Soldatova N.S., Suslonov V. V., Kissler T. Y. et al. // Crystals. 2020. V. 10. № 3. https://doi.org/10.3390/cryst10030230
- Aliyarova I.S., Ivanov D. M., Soldatova N. S. et al. // Cryst. Growth Des. 2021. V. 21. № 2. P. 1136. https://doi.org/10.1021/acs.cgd.0c01463
- Soldatova N.S., Postnikov P. S., Suslonov V. V. et al. // Org. Chem. Front. 2020. V. 7. № 16. P. 2230. https://doi.org/10.1039/d0qo00678e
- Hu C., Li Q., Englert U. // CrystEngComm. 2003. V. 5. № 94. P. 519. https://doi.org/10.1039/b314522k
- Wang A., Englert U., IUCr // Acta Crystallogr. C. 2017. V. 73. № 10. P. 803. https://doi.org/10.1107/S2053229617013201
- Hu C., Kalf I., Englert U. // CrystEngComm. 2007. V. 9. № 7. P. 603. https://doi.org/10.1039/b701907f
- Zordan F., Brammer L. // Cryst. Growth Des. 2006. V. 6. № 6. P. 1374. https://doi.org/10.1021/cg050670m
- Awwadi F.F., Alwahsh M. I., Turnbull M. M. et al. // Dalton Trans. 2021. V. 50. № 12. P. 4167. https://doi.org/10.1039/d0dt04071a
- Puttreddy R., von Essen C., Rissanen K. // Eur. J. Inorg. Chem. 2018. V. 2018. № 20–21. P. 2393. https://doi.org/10.1002/ejic.201800144
- Puttreddy R., von Essen C., Peuronen A. et al. // CrystEngComm. 2018. V. 20. № 14. P. 1954. https://doi.org/10.1039/C8CE00209F
- Awwadi F.F., Turnbull M. M., Alwahsh M. I. et al. // New J. Chem. 2018. V. 42. № 13. P. 10642. https://doi.org/10.1039/C8NJ00422F
- Qian W., Yuan H.-K., Zhang R. et al. // J. Coord. Chem. 2016. V. 69. № 23. P. 3593. https://doi.org/10.1080/00958972.2016.1242727
- Zisti F., Tehrani A. A., Alizadeh R. et al. // J. Solid State Chem. 2019. V. 271. P. 29. https://doi.org/10.1016/j.jssc.2018.12.049
- Tehrani A.A., Abedi S., Morsali A. // Cryst. Growth Des. 2017. V. 17. № 1. P. 255. https://doi.org/10.1021/acs.cgd.6b01518
- Kryukova M.A., Ivanov D. M., Kinzhalov M. A. et al. // Chem. Eur. J. 2019. V. 25. № 60. P. 13671. https://doi.org/10.1002/chem.201902264
- Demakova M.Y., Bolotin D. S., Bokach N. A. et al. // Chempluschem. 2015. V. 80. № 11. P. 1607. https://doi.org/10.1002/cplu.201500327
- Fischer M., Wolff M. C., Del Horno E. et al. // Organometallics. 2020. V. 39. № 17. P. 3232. https://doi.org/10.1021/acs.organomet.0c00452
- Ramón R.S., Gaillard S., Poater A. et al. // Chem. Eur. J. 2011. V. 17. № 4. P. 1238. https://doi.org/10.1002/chem.201002607
- George A.V., Field L. D., Malouf E. Y. et al. // J. Organomet. Chem. 1997. V. 538. № 1–2. P. 101. https://doi.org/10.1016/S0022-328X(96)06912-4
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Hübschle C.B., Sheldrick G. M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
- Çelik Ö., Ide S., Kurt M. et al. // Acta Crystallogr. E. 2004. V. 60. № 4. P. M424. https://doi.org/10.1107/S1600536804004908
- Şahin E., Ide S., Ataç A. et al. // J. Mol. Struct. 2002. V. 616. № 1–3. P. 253. https://doi.org/10.1016/S0022-2860(02)00346-0
- Smirnov A.S., Butukhanova E. S., Bokach N. A. et al. // Dalton Trans. 2014. V. 43. № 42. P. 15798. https://doi.org/10.1039/c4dt01812e
- Bondi A. // J. Phys. Chem. 1966. V. 70. № 9. P. 3006. https://doi.org/10.1021/j100881a503
- Mantina M., Chamberlin A. C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/jp8111556
- Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. № 4. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484
- Chai J.-D., Head-Gordon M. // Phys. Chem. Chem. Phys. 2008. V. 10. № 44. P. 6615. https://doi.org/10.1039/b810189b
- Barros C.L., de Oliveira P. J.P., Jorge F. E. et al. // Mol. Phys. 2010. V. 108. № 15. P. 1965. https://doi.org/10.1080/00268976.2010.499377
- Jorge F.E., Canal Neto A., Camiletti G. G. et al. // J. Chem. Phys. 2009. V. 130. № 6. P. 064108. https://doi.org/10.1063/1.3072360
- Bader R.F.W. // Chem. Rev. 1991. V. 91. № 5. P. 893. https://doi.org/10.1021/cr00005a013
- Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580. https://doi.org/10.1002/jcc.22885
- Bikbaeva Z.M., Novikov A. S., Suslonov V. V. et al. // Dalton Trans. 2017. V. 46. № 30. P. 10090. https://doi.org/10.1039/c7dt01960b
- Kolari K., Sahamies J., Kalenius E. et al. // Solid State Sci. 2016. V. 60. P. 92. https://doi.org/10.1016/j.solidstatesciences.2016.08.005
- Melekhova A.A., Novikov A. S., Panikorovskii T. L. et al. // New J. Chem. 2017. V. 41. № 23. P. 14557. https://doi.org/10.1039/c7nj02798b
- Novikov A.S., Kuznetsov M. L. // Inorg. Chim. Acta. 2012. V. 380. № 1. P. 78. https://doi.org/10.1016/j.ica.2011.08.016
- Johnson E.R., Keinan S., Mori-Sánchez P. et al. // J. Am. Chem. Soc. 2010. V. 132. № 18. P. 6498. https://doi.org/10.1021/ja100936w
- Bartashevich E.V., Tsirelson V. G. // Russ. Chem. Rev. 2014. V. 83. № 12. P. 1181. https://doi.org/10.1070/RCR4440
补充文件
