3,6-Dipyridyl-1,2,4,5-tetrazine in the Synthesis of Zinc and Cadmium Metal-Organic Frameworks with Anilate-Type Ligands

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New heteroleptic metal-organic frameworks (MOF) of zinc (3D MOF) and cadmium (2D MOF) are prepared by the two-stage synthesis: [Zn(pQ)(DPT)]·2DMF (I) and Cd2(NO3)2-(pQ)(DPT)3]·2DMF·2MeOH (II), where pQ is the 2,5-dihydroxy-3,6-di-tert-butyl-para-benzoquinone dianion, DPT is 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine, and DMF is N,N-dimethylformamide (DMF). The structures of the compounds are studied by XRD (CIF files CCDC nos. 2332754 (I) and 2332755 (II)). The thermal stability of the MOF is studied by thermogravimetry.

Full Text

Restricted Access

About the authors

O. Yu. Trofimova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: olesya@iomc.ras.ru
Russian Federation, Nizhny Novgorod

D. S. Kolevatov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: olesya@iomc.ras.ru
Russian Federation, Nizhny Novgorod

N. O. Druzhkov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: olesya@iomc.ras.ru
Russian Federation, Nizhny Novgorod

A. V. Maleeva

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: olesya@iomc.ras.ru
Russian Federation, Nizhny Novgorod

I. A. Yakushev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: olesya@iomc.ras.ru
Russian Federation, Moscow

P. V. Dorovatovskii

National Research Center Kurchatov Institute

Email: olesya@iomc.ras.ru
Russian Federation, Moscow

A. V. Piskunov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: olesya@iomc.ras.ru
Russian Federation, Nizhny Novgorod

References

  1. Kovalenko K.A., Potapov A.S., Fedin V.P. // Russ. Chem. Rev. 2022. V. 91. P. RCR5026. https://doi.org/10.1070/RCR5026
  2. Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Сhem. 2022. V. 63. P. 671. https://doi.org/10.26902/JSC_id93211
  3. Monni N., Oggianu M., Sahadevan S.A. et al. // Magnetochemistry. 2021. V. 7. P. 109. https://doi.org/10.3390/magnetochemistry7080109
  4. Benmansour S., Gómez-García C.J. // Magnetochemistry. 2020. V. 6. P. 71. https://doi.org/10.3390/magnetochemistry6040071
  5. Liu K.-G., Sharifzadeh Z., Rouhani F. et al. // Coord. Chem. Rev. 2021. V. 436. P. 213827. https://doi.org/10.1016/j.ccr.2021.213827
  6. Wang C., Liao K. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 56752. https://doi.org/10.1021/acsami.1c13408
  7. Fasna F., Sasi S. // ChemistrySelect. 2021. V. 6. P. 6365. https://doi.org/doi.org/10.1002/slct.202101533
  8. Antipin I.S., Burilov V.A., Gorbatchuk V.V. et al. // Russ. Chem. Rev. 2021. V. 90. P. 895. https://doi.org/10.1070/RCR5011
  9. Kitagawa S., Matsuda R. // Coord. Chem. Rev. 2007. V. 251. P. 2490. https://doi.org/10.1016/j.ccr.2007.07.009
  10. Kingsbury C.J., Abrahams B.F., Auckett J.E. et al. // Chem. Eur. J. 2019. V. 25. P. 5222. https://doi.org/10.1002/chem.201805600
  11. Abrahams B.F., Dharma A.D., Dyett B. et al. // Dalton Trans. 2016. V. 45. P. 1339. https://doi.org/10.1039/c5dt04095g
  12. Adil K., Belmabkhout Y., Pillai R.S. et al. // Chem. Soc. Rev. 2017. V. 46. P. 3402. https://doi.org/10.1039/c7cs00153c
  13. Ezugwu C.I., Liu S., Li C., et al. // Coord. Chem. Rev. 2021. V. 450. P. 214245. https://doi.org/10.1016/j.ccr.2021.214245
  14. Hu Z., Zhao D. // CrystEngComm. 2017. V. 19. P. 4066. https://doi.org/10.1039/c6ce02660e
  15. Zhang X., Wang C., Wang L.Y. et al. // Appl Organomet Chem. 2022. V. e6603. P. 1. https://doi.org/10.1002/aoc.6603
  16. Artem′ev A.V., Fedin V.P. // Russian Journal of Organic Chemistry. 2019. V. 55. P. 800. https://doi.org/10.1134/S1070428019060101
  17. Wang Y., Liu X., Li X. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 8030. 10.1021/jacs.9b01270
  18. Chang C.-H., Li A.-C., Popovs I. et al. // J. Mater. Chem. A. 2019. V. 7. P. 23770. https://doi.org/10.1039/c9ta05244e
  19. Chen H.-J., Chen L.-Q., Lin L.-R. et al. // Inorg. Chem. 2021. V. 60. P. 6986−6990. https://doi.org/10.1021/acs.inorgchem.1c00740
  20. Huangfu M., Wang M., Lin C. et al. // Dalton Trans. 2021. V. 50. P. 3429. https://doi.org/10.1039/D0DT04276E
  21. Li P., Zhou Z., Zhao Y.S. et al. // Chem. Commun. 2021. V. 57. P. 13678. https://doi.org/10.1039/d1cc05541k
  22. Gorai T., Schmitt W., Gunnlaugsson T. // Dalton Trans. 2021. V. 50. P. 770. https://doi.org/10.1039/d0dt03684f
  23. Rogovoy M.I., Frolova T.S., Samsonenko D.G. et al. // Eur. J. Inorg. Chem.. 2020. V. 2020. P. 1635. https://doi.org/10.1002/ejic.202000109
  24. Calbo J., Golomb M.J., Walsh A. // J. Mater. Chem. A. 2019. V. 7. P. 16571. https://doi.org/10.1039/c9ta04680a
  25. Wang M., Dong R. and Feng X. // Chem. Soc. Rev. 2021. V. 50. P. 2764. https://doi.org/10.1039/d0cs01160f
  26. Dong R., Feng X. // Nature Materials. 2021. V. 20. P. 122. https://doi.org/10.1038/s41563-020-00912-1
  27. Benmansour S., Gómez-García C.J. // Gen. Chem. 2020. V. 6. P. 190033. https://doi.org/10.21127/yaoyigc20190033
  28. Espallargas G.M., Coronado E. // Chem. Soc. Rev. 2018. V. 47. P. 533. https://doi.org/10.1039/c7cs00653e
  29. Gou X., Wu Y., Wang M. et al. // Dalton Trans. 2024. V. 53. P. 148. https://doi.org/10.1039/D3DT02714G
  30. Monni N., Baldoví J.J., García-López V. et al. // Chemical Science. 2022. V. 13. P. 7419. https://doi.org/10.1039/D2SC00769J
  31. Ovcharenko V., Fursova E., Letyagin G. et al. // CrystEngComm. 2023. V. 25. P. 6194. https://doi.org/10.1039/D3CE00912B
  32. Huang Z., Yu H., Wang L. et al. // Coord. Chem. Rev. 2021. V. 430. P. 213737. https://doi.org/10.1016/j.ccr.2020.213737
  33. Monni N., Angotzi M.S., Oggianu M. et al. // J. Mater. Chem. C. 2022. V. 10. P. 1548. https://doi.org/10.1039/d1tc05335c
  34. Kitagawa S., Kawata S. // Coord. Chem. Rev. 2002. V. 224. P. 11. https://doi.org/10.1016/S0010-8545(01)00369-1
  35. Kharitonov A.D., Trofimova O.Y., Meshcheryakova I.N. et al. // CrystEngComm. 2020. V. 22. P. 4675. https://doi.org/10.1039/d0ce00767f
  36. Trofimova O.Yu., Ershova I.V., Maleeva A.V. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 610. https://doi.org/10.1134/S1070328421090086
  37. Trofimova O.Yu., Maleeva A.V., Ershova I.V. et al. // Molecules. 2021. V. 26. P. 2486. https://doi.org/10.3390/molecules26092486
  38. Trofimova O.Yu., Maleeva A.V., Arsenyeva K.V. et al. // Crystals. 2022. V. 12. P. 370. https://doi.org/10.3390/cryst12030370
  39. Trofimova O.Yu., Maleeva A.V., Arsenyeva K.V., et al. // J. Struct. Сhem. 2023. Vol. 64. P. 1070. https://doi.org/10.1134/S0022476623060100
  40. Trofimova O.Yu., Maleeva A.V., Arsenyeva K.V., et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 276. https://doi.org/10.1134/S1070328423600183
  41. Okhlopkova L.S., Poddel′sky A.I., Fukin G.K., et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 386. https://doi.org/10.31857/S0132344X20050059
  42. Khamaletdinova N.M., Meshcheryakova I.N., Piskunov A.V., et al. // J. Struct. Сhem. 2015. V. 56. P. 233. https://doi.org/10.1134/S0022476615020055
  43. Min K.S., DiPasquale A.G., Rheingold A.L. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 6229. https://doi.org/10.1021/ja900909u
  44. Min K.S., DiPasquale A., Rheingold A.L. et al. // Inorg. Chem. Com. 2007. V. 46. P. 1048. https://doi.org/10.1021/ic062400e
  45. Trofimova O.Y., Ershova I.V., Maleeva A.V. et al. // J. Inorg. Organomet. Polym. Materials. 2024. V.P. https://doi.org/10.1007/s10904-024-03013-7
  46. Withersby M.A., Blake A.J., Champness N.R. et al. // J. Am. Chem. Soc. 2000. V. 122. P. 4044. https://doi.org/10.1021/ja991698n
  47. Liu K., Han X., Zou Y. et al. // Inorg. Chem. Comm. 2014. V. 39. P. 131. https://doi.org/10.1016/j.inoche.2013.11.011
  48. Cepeda J., Pérez-Yáñez S., García J.Á. et al. // Dalton Trans. 2021. V. 50. P. 9269. https://doi.org/10.1039/D1DT01204E
  49. Li J., Peng Y., Liang H. et al. // Eur. J. Inorg. Chem. 2011. V. 2011. P. 2712. https://doi.org/10.1002/ejic.201100227
  50. Xue M., Ma S., Jin Z. et al. // Inorg. Chem. 2008. V. 47. P. 6825. https://pubs.acs.org/doi/10.1021/ic800854y
  51. Hijikata Y., Horike S., Sugimoto M. et al. // Chem. Eur. J. 2011. V. 17. P. 5138. https://doi.org/10.1002/chem.201003734
  52. Lee L.-W., Luo T.-T., Lo S.-H. et al. // CrystEngComm. 2015. V. 17. P. 6320. https://doi.org/10.1039/C5CE00923E
  53. Razavi S.A.A., Masoomi M.Y., Islamoglu T. et al. // Inorg. Chem. 2017. V. 56. P. 2581. https://doi.org/10.1021/acs.inorgchem.6b02758
  54. Zhang R., Huang J.-H., Meng D.-X. et al. // Dalton Trans. 2020. V. 49. P. 5618. https://doi.org/10.1039/D0DT00793E
  55. Hijikata Y., Horike S., Sugimoto M. et al. // Inorg. Chem. 2013. V. 52. P. 3634. https://doi.org/10.1021/ic302006x
  56. Fernández B., Seco J.M., Cepeda J. et al. // CrystEngComm. 2015. V. 17. P. 7636. https://doi.org/10.1039/C5CE01521A
  57. Seco J.M., Pérez-Yáñez S., Briones D., et al. // Cryst. Growth Des. 2017. V. 17. P. 3893. https://doi.org/10.1021/acs.cgd.7b00522
  58. Mulfort K.L., Wilson T.M., Wasielewski M.R. et al. // Langmuir. 2009. V. 25. P. 503. https://doi.org/10.1021/la803014k
  59. Dinolfo P.H., Williams M.E., Stern C.L. et al. // J. Am. Chem. Soc. 2004. V. 126. P. 12989. https://doi.org/10.1021/ja0473182
  60. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. //Cryst. Res. Technol. 2020. V. 55. P. 1900184. https://doi.org/10.1002/crat.201900184
  61. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 125. https://doi.org/10.1107/S0907444909047337
  62. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  63. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  64. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  65. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576. https://doi.org/10.1021/cg500498k
  66. Alexandrov E.V., Blatov V.A., Kochetkov A.V. et al. // CrystEngComm. 2011. V. 13. P. 3947. https://doi.org/10.1039/c0ce00636j
  67. Aleksandrov E.V., Shevchenko A.P., Nekrasova N.A. et al. // Russ. Chem. Rev. 2022. V. 91. P. Art. RCR5032. https://doi.org/10.1070/RCR5032
  68. Cordero B., Gomez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. V.P. 2832. https://doi.org/10.1039/b801115j
  69. Batsanov S.S. // Russ. J. Inorg. Chem. 1991. V. 36. P. 1694.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1: Organic ligands used for the synthesis of zinc and cadmium MOCPs.

Download (42KB)
3. Scheme 2: Synthesis of heteroleptic MOCPs I and II.

Download (188KB)
4. Fig. 1. Molecular structure of the link and polyhedron of MOCP I. Thermal ellipsoids are given at 50% probability. Hydrogen atoms and “guest” DMF molecules are not depicted.

Download (180KB)
5. Fig. 2. Molecular structure of the link and polyhedron of MOCP II. Thermal ellipsoids are given at 50% probability. Hydrogen atoms and “guest” molecules of DMF and MeOH are not depicted.

Download (193KB)
6. Fig. 3. View of the MOCP I framework along vector (001) (a); location of interpenetrating MOCP I frameworks in the crystal along vector (001) (b); view of channels in I along vector (001) (c). The outer side of the channels is pink; the inner side is blue. “Guest” DMF molecules are not depicted.

Download (372KB)
7. Fig. 4. View of a pair of interpenetrating MOCP II networks along vector (100) (a); layers formed by pairwise interpenetrating networks in the crystal along vector (010) (b); view of pores in II along vector (010) (c). The outer side of the pores is pink; the inner side is blue. “Guest” molecules of DMF and MeOH are not depicted.

Download (412KB)
8. Fig. 5. Thermogravimetric curves for MOC I (red line) and II (blue line).

Download (74KB)

Copyright (c) 2024 Российская академия наук