Synthesis and X-ray Structures of Polymeric Calcium Carboxylates
- Авторлар: Samulionis A.S.1, Voronina J.K.1, Melnikov S.N.1, Gavronova A.S.1, Utepova D.A.1, Gogoleva N.V.1, Goloveshkin A.S.2, Yambulatov D.S.1, Nikolaevskii S.A.1, Kiskin M.A.1, Eremenko I.L.1
-
Мекемелер:
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- Шығарылым: Том 50, № 9 (2024)
- Беттер: 613-626
- Бөлім: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667667
- DOI: https://doi.org/10.31857/S0132344X24090084
- EDN: https://elibrary.ru/LXIOMZ
- ID: 667667
Дәйексөз келтіру
Аннотация
The reactions of calcium hydroxide with pivalic, 1-naphthoic, and 2-furancarboxylic acids afford the corresponding polymeric calcium carboxylates. Depending on the crystallization conditions, calcium pivalate is isolated as two different coordination polymers: [Ca3(Piv)6(DMF)2]n · 0.635nC6H6 · 0.365nDMF (I) and [Ca(Рiv)(H2O)2.333(DMF)0.666]n · nРiv·0.333H2O (II). The synthesized calcium 1-naphthoate contains coordinated water molecules [Сa(Naph)2(H2O)2]n (III), and calcium furoate [Ca(Fur)2]n (IV) contains no ancillary ligands. The structures of compounds I–IV are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2342790–2342793, respectively). The structures of compounds I–III are characterized by the 1D polymeric structure, and compound IV is the 3D polymer.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Samulionis
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Ресей, Moscow
J. Voronina
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Ресей, Moscow
S. Melnikov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Ресей, Moscow
A. Gavronova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Ресей, Moscow
D. Utepova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Ресей, Moscow
N. Gogoleva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Ресей, Moscow
A. Goloveshkin
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Ресей, Moscow
D. Yambulatov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Ресей, Moscow
S. Nikolaevskii
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: sanikol@igic.ras.ru
Ресей, Moscow
M. Kiskin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Ресей, Moscow
I. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Ресей, Moscow
Әдебиет тізімі
- Bennett T., Geue N., Timco G. et al. // Chem. Eur. J. 2024. V. 30. P. e202400432.
- Darii M., Leusen J.V., Kravtsov V.Ch. et al. // Cryst. Growth Des. 2023. V. 23. P. 6944.
- Pavlov D.I., Yu X., Ryadun A.A. et al. // Food Chem. 2024. V. 445. P. 138747. https://doi.org/10.1016/j.foodchem.2024.138747;
- Lysova A.A., Samsonenko D.G., Dorovatovskii P.V. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 17260.
- Bondarenko G.N., Ganina O.G., Lysova A.A. et al. // J. CO2 Util. 2021. V. 53. P. 101718.
- Lysova A.A., Samsonenko D.G., Kovalenko K.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 20561.
- Podgornii D., Leusen J.V., Kravtsov V.Ch. et al. // CrystEngComm. 2021. V. 23. P. 153.
- Alotaibi R., Fowler J.M., Lockyer S.J. et al. // Angew. Chem. Int. Ed. 2021. V. 133. P. 9575.
- Bazhina E.S., Gogoleva N.V., Zorina-Tikhonova E.N. et al. // J. Struct. Chem. 2019. V. 60. P. 855. https://doi.org/10.1134/S0022476619060015
- Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. P. 1093.
- Bazhina E.S., Nikiforova M.E., Aleksandrov G.G. et al. // Russ. Chem. Bull. 2011. V. 60. P. 797. https://doi.org/10.1007/s11172-011-0127-6;
- Bushuev V.A., Gogoleva N.V., Nikolaevskii S.A. et al. // Molecules. 2024. V. 29. P. 2125.
- Bondarenko M.A., Abramov P.A., Novikov A.S. et al. // Polyhedron. 2022. V. 214. P. 115644.
- Bondarenko M.A., Novikov A.S., Adonin S.A. // Russ. J. Inorg. Chem. 2021. V. 66. P. 814. https://doi.org/10.1134/S0036023621060061
- Zaguzin A.S., Sukhikh T.S., Kolesov B.A. et al. // Polyhedron. 2022. V. 212. P. 115587.
- Bondarenko M.A., Novikov A.S., Korolkov I.V. et al. // Inorg. Chim. Acta. 2021. V. 524. P. 120436.
- Bondarenko M.A., Novikov A.S., Sukhikh T.S. et al. // J. Mol. Struct. 2021. V. 1244. P. 130942.
- Polyukhov D.M., Kudriavykh N.A., Gromilov S.A. et al. // ACS Energy Lett. 2022. V. 7. P. 4336.
- Yu X., Ryadun A.A., Potapov A.S., Fedin V.P. // J. Hazard. Mater. 2023. V. 452. P. 131289.
- Yu X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chem. Int. Ed. 2023. V. 62. P. 202306680.
- Yu X., Ryadun A.A., Pavlov D.I. et al. // Adv. Mater. 2024. V. 36. P. 2311939.
- Nehrkorn J., Valuev I.A., Kiskin M.A. et al. // J. Mater. Chem. C. 2021. V. 9. P. 9446.
- Jiang G., Osman S., Senthil R.A. et al. // J. Energy Storage. 2022. V. 49. P. 104071.
- Dong K., Liang J., Wang Y. et al. // ACS Catal. 2022. V. 12. № 10. P. 6092.
- Zhang Y., Li J., Zhao W. et al. // Adv. Mater. 2022. V. 34. № 6. P. 2108114.
- Kong Y.-X., Di Y.-Y., Yang W.-W. et al. // J. Chem. Eng. Data. 2009. V. 54. № 8. P. 2256.
- Mukherjee S., Chen S., Bezrukov A.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 16188.
- Wang W., Lemaire R., Bensakhria A., Luart D. // J. Anal. Appl. Pyrolysis. 2022. V. 163. P. 105479.
- Zeng L., Huang L., Wang Z. et al. // Angew. Chem. Int. Ed. 2021. V. 60. № 44. P. 23569. https://doi.org/10.1002/anie.202108076;
- Yang J., Trickett C.A., Alahmad S.B. et al. // J. Am. Chem. Soc. 2017. V. 139. № 24. P. 8118.
- Liu W., Low N.W.L., Feng B. et al. // Environ. Sci. Technol. 2010. V. 44. № 2. P. 841.
- Karppinen M., Fjellvåg H., Konno T. et al. // Chem. Mater. 2004. V. 16. № 14. P. 2790.
- Tahashi M., Takahashi M., Goto H. // J. Am. Ceram. Soc. 2017. V. 101. № 4. P. 1393.
- Tahashi M., Tanimoto T., Goto H. et al. // J. Am. Ceram. Soc. 2010. V. 93. № 10. P. 2915.
- Cambridge Structural Atabase. CSD version 5.45 (November 2023).
- Banerjee D., Wang H., Gong Q. et al. // Chem. Sci. 2016. V. 7. P. 759.
- Plonka A.M., Chen X., Wang H. et al. // Chem. Mater. 2016. V. 28. № 6. P. 1636.
- Lin Y., Zhang J., Pandey H. et al. // J. Mater. Chem. A. 2021. V. 9. P. 26202.
- Plonka A.M., Banerjee D., Woerner W.R. et al. // Angew. Chem. Int. Ed. 2013. V. 52. № 6. P. 1692.
- Chen X., Plonka A.M., Banerjee D. et al. // J. Am. Chem. Soc. 2015. V. 137. № 22. P. 7007.
- Furman J.D., Burwood R.P., Tang M. et al. // J. Mater. Chem. 2011. V. 21. P. 6595.
- Yin Y.-J., Zhao H., Zhang L. et al. // Chem. Mater. 2021. V. 33. № 18. P. 7272.
- Wei Z.-W., Chen C.-X., Zheng S.-P. et al. // Inorg. Chem. 2016. V. 55. № 15. P. 7311.
- Wu Z.-F., Tan B., Fu Z.-H. et al. // Chem. Sci. 2022. V. 13. P. 1375.
- Wang Y.-X., Wang H.-M, Meng P. et al. // Dalton Trans. 2021. V. 50. P. 1740.
- Bazaga-García M., Colodrero R.M.P., Papadaki M. et al. // J. Am. Chem. Soc. 2014. V. 136. № 15. P. 5731.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. Р. 3.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. Р. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
- Llunell M., Casanova D., Cirena J. et al. SHAPE. Version.2.1. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools. Barcelona (Spain): Universitat de Barcelona, 2013.
- Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576
- Alexandrov E.V., Shevchenko A.P., Blatov V.A. // Cryst. Growth Des. 2019. V. 19. № 5. P. 2604.
- Troyanov S.I., Il′ina E.G., Dunaeva K.M. // Koord. Khim. 1991. V. 17. № 12. P. 1692.
- Denisova T.O., Amel'chenkova E.V., Pruss I.V. et al. // Russ. J. Inorg. Chem. 2006. V. 51. № 7. P. 1020. https://doi.org/10.1134/S0036023606070084
- Fomina I.G., Chernyshev V.V., Velikodnyi Y.A. et al. // Russ. Chem. Bull. 2013. V. 62. P. 427. https://doi.org/10.1007/s11172-013-0057-6
- Golubnichaya M.A., Sidorov A.A., Fomina I.G. et al. // Russ. Chem. Bull. 1999. V. 48. P. 1751. https://doi.org/10.1007/BF02494824
- Fomina I.G., Aleksandrov G.G., Dobrokhotova Z.V. et al. // Russ. Chem. Bull. 2006. V. 55. P. 1909. https://doi.org/10.1007/s11172-006-0532-4
- Zorina-Tikhonova E.N., Yambulatov D.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 75. https://doi.org/10.1134/S1070328420020104
- Shevchenko A.P., Shabalin A.A., Karpukhin I.Yu., Blatov V.A. // Sci. Technol. Adv. Mater. Methods. 2022. V. 2. № 1. P. 250.
- Kim H., Samsonenko D.G., Yoon M. et al. // Chem. Commun. 2008. V. 39. P. 4697.
- Wang Z., Zhang B., Fujiwara H. et al. // Chem. Commun. 2004. V. 4. P. 416.
- Wang Z., Zhang Y., Kurmoo M. et al. // Aust. J. Chem. 2006. V. 59. № 9. P. 617.
- Yang H.-J., Kou H.-Z., Ni Z.-H. et al. // Inorg. Chem. Commun. 2005. V. 8. № 9. P. 846.
Қосымша файлдар
