Structural modifications of the platinum(II) isocyanide complexes changing their solid-state luminescence
- Autores: Antonova E.V.1, Sandzhieva M.A.2, Kinzhalov M.A.1
- 
							Afiliações: 
							- St. Petersburg State University
- St. Petersburg National Research University of Information Technologies, Mechanics, and Optics
 
- Edição: Volume 50, Nº 12 (2024)
- Páginas: 860–868
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/676751
- DOI: https://doi.org/10.31857/S0132344X24120068
- EDN: https://elibrary.ru/LMCLII
- ID: 676751
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Cyclometallated platinum(II) complexes with the general formula [Pt(Рpy)(CNR)2]X (HРpy = 2-phenylpyridine; R = iPr, tBu, Cy; X = BF4, OTf, PF6) containing various alkylisocyanide ligands and counterions are synthesized. The compounds are studied by elemental analysis, ESI HRMS, IR spectroscopy, and 1H, 13C{1H}, and 195Pt{1H} NMR spectroscopy. The structures of [Pt(Рpy)(CNiPr)2]BF4 and [Pt(Рpy)(CNtBu)2]BF4 are determined by XRD (CIF files CCDC nos. 2325595 and 2325527, respectively). The photophysical properties in the solution and in the solid state of the synthesized compounds are studied.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
E. Antonova
St. Petersburg State University
														Email: m.kinzhalov@spbu.ru
				                					                																			                												                	Rússia, 							St. Petersburg						
M. Sandzhieva
St. Petersburg National Research University of Information Technologies, Mechanics, and Optics
														Email: m.kinzhalov@spbu.ru
				                					                																			                												                	Rússia, 							St. Petersburg						
M. Kinzhalov
St. Petersburg State University
							Autor responsável pela correspondência
							Email: m.kinzhalov@spbu.ru
				                					                																			                												                	Rússia, 							St. Petersburg						
Bibliografia
- Li X., Xie Y., Li Z. // Chem Asian J. 2021. V. 16. № 19. P. 2817. https://doi.org/10.1002/asia.202100784
- Lee S., Han W.-S. // Inorg. Chem. Front. 2020. V. 7. № 12. P. 2396. https://doi.org/10.1039/D0QI00001A
- Zhang Q.-C., Xiao H., Zhang X. et al. // Chem. Soc. Rev. 2019. V. 378. № . P. 121. https://doi.org/10.1016/j.ccr.2018.01.017
- Katkova S.A., Kozina D.O., Kisel K.S. et al. // Dalton Trans. 2023. V. 52. № 14. P. 4595. https://doi.org/10.1039/d3dt00080j.
- Zhou X., Lee S., Xu Z. et al. // Chem. Rev. 2015. V. 115. № 15. P. 7944. https://doi.org/10.1021/cr500567r
- Eremina A.A., Kinzhalov M.A., Katlenok E.A. et al. // Inorg. Chem. 2020. V. 59. № 4. P. 2209. https://doi.org/10.1021/acs.inorgchem.9b02833
- Chan A.Y., Perry I.B., Bissonnette N.B. et al. // Chem. Rev. 2021. V. № . P. https://doi.org/10.1021/acs.chemrev.1c00383
- Li K., Chen Y., Wang J. et al. // Coord. Chem. Rev. 2021. V. 433. № . P. 213755. https://doi.org/10.1016/j.ccr.2020.213755
- To W.P., Wan Q.Y., Tong G.S.M. et al. // Trends Chem. 2020. V. 2. № 9. P. 796. https://doi.org/10.1016/j.trechm.2020.06.004
- Kinzhalov M.A., Grachova E.V., Luzyanin K.V. // Inorg. Chem. Front. 2022. V. 9. № . P. 417. https://doi.org/10.1039/D1QI01288F
- Lu B., Liu S., Yan D. // Chin. Chem. Lett. 2019. V. 30. № 11. P. 1908. https://doi.org/10.1016/j.cclet.2019.09.012
- Wang W., Zhang Y., Jin W.J. // Coord. Chem. Rev. 2020. V. 404. № . P. https://doi.org/10.1016/j.ccr.2019.213107
- Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. № . P. https://doi.org/10.1016/j.ccr.2019.213094
- Yoshida M., Kato M. // Coord. Chem. Rev. 2018. V. 355. № . P. 101. https://doi.org/10.1016/j.ccr.2017.07.016
- Puttock E.V., Walden M.T., Williams J.A.G. // Coord. Chem. Rev. 2018. V. 367. № . P. 127. https://doi.org/10.1016/j.ccr.2018.04.003
- Ravotto L., Ceroni P. // Coord. Chem. Rev. 2017. V. 346. № . P. 62. https://doi.org/10.1016/j.ccr.2017.01.006
- Solomatina A.I., Galenko E.E., Kozina D.O. et al. // Chemistry. 2022. V. 28. № 64. P. e202202207. https://doi.org/10.1002/chem.202202207
- Sokolova E.V., Kinzhalov M.A., Smirnov A.S. et al. // ACS Omega. 2022. V. 7. № 38. P. 34454. https://doi.org/10.1021/acsomega.2c04110
- Saito D., Ogawa T., Yoshida M. et al. // Angew. Chem. Int. Ed. Engl. 2020. V. 59. № 42. P. 18723. https://doi.org/10.1002/anie.202008383
- Yoshida M., Kato M. // Coord. Chem. Rev. 2020. V. 408. № . P. https://doi.org/10.1016/j.ccr.2020.213194
- Chaaban M., Lee S., Vellore Winfred J.S.R. et al. // Small Struct. 2022. V. 3. № 9. P. 2200043. https://doi.org/10.1002/sstr.202200043
- Ogawa T., Sameera W.M.C., Saito D. et al. // Inorg. Chem. 2018. V. 57. № 22. P. 14086. https://doi.org/10.1021/acs.inorgchem.8b01654.
- Law A.S., Lee L.C., Lo K.K. et al. // J. Am. Chem.Soc. 2021. V. 143. № 14. P. 5396. https://doi.org/10.1021/jacs.0c13327
- Po C., Tam A.Y., Wong K.M. et al. // J. Am. Chem. Soc. 2011. V. 133. № 31. P. 12136. https://doi.org/10.1021/ja203920w
- Cave G.W.V., Fanizzi F.P., Deeth R.J. et al. // Organometallics. 2000. V. 19. № 7. P. 1355. https://doi.org/10.1021/om9910423
- Liu J., Leung C.H., Chow A.L. et al. // Chem Commun. 2011. V. 47. № 2. P. 719. https://doi.org/10.1039/c0cc03641b
- Dobrynin M.V., Sokolova E.V., Kinzhalov M.A. et al. // ACS Appl. Polym. Mater. 2021. V. 3. № 2. P. 857. https://doi.org/10.1021/acsapm.0c01190
- Hubschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
- CrysAlisPro. Yarnton (Oxfordshire, England): Agilent Technologies Ltd., 2012.
- CrysAlisPro. Yarnton (Oxfordshire, England): Agilent Technologies Ltd., 2014.
- CrysAlisPro. Yarnton (Oxfordshire, England): Oxford Diffraction Ltd., 2009.
- Katkova S.A., Sokolova E.V., Kinzhalov M.A. // Russ. J. Gen. Chem.. 2023. V. 93. № 1. P. 43. https://doi.org/10.1134/S1070363223010073
- Forniés J., Fuertes S., Larraz C. et al. // Organometallics. 2012. V. 31. № 7. P. 2729. https://doi.org/10.1021/om201036z
- Kinzhalov M.A., Boyarskii V.P. // Russ. J. Gen. Chem. 2015. V. 85. № 10. P. 2313. https://doi.org/10.1134/s1070363215100175
- Pawlak T., Niedzielska D., Vícha J. et al. // J. Organometal. Chem. 2014. V. 759. № . P. 58. https://doi.org/10.1016/j.jorganchem.2014.02.016
- Katkova S.A., Mikherdov A.S., Sokolova E.V. et al. // J. Mol. Struct. 2022. V. 1253. № . P. 132230. https://doi.org/10.1016/j.molstruc.2021.132230
- Katkova S.A., Eliseev I.I., Mikherdov A.S. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 3. P. 393. https://doi.org/10.1134/S1070363221030099
- Martínez-Junquera M., Lara R., Lalinde E. et al. // J. Mater. Chem. C. 2020. V. 8. № 21. P. 7221. https://doi.org/10.1039/D0TC01163K
- Martinez-Junquera M., Lalinde E., Moreno M.T. // Inorg. Chem. 2022. V. 61. № 28. P. 10898. https://doi.org/10.1021/acs.inorgchem.2c01400
- Shahsavari H.R., Babadi Aghakhanpour R., Hossein-Abadi M. et al. // New J. Chem. 2017. V. 41. № 24. P. 15347. https://doi.org/10.1039/c7nj03110f
- Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001.
- Katkova S.A., Luzyanin K.V., Novikov A.S. et al. // New J. Chem. 2021. V. 45. № 6. P. 2948 https://doi.org/10.1039/D0NJ05457G.
- Martinez-Junquera M., Lalinde E., Moreno M.T. et al. // Dalton Trans. 2021. V. 50. № 13. P. 4539. https://doi.org/10.1039/d1dt00480h
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




