The role of 2-hydroxypyridine in the formation of pivalate Zn–Gd complexes
- Authors: Nikiforova M.E.1, Kiskin M.A.1, Sidorov A.A.1, Uvarova M.A.1, Eremenko I.L.1
- 
							Affiliations: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
 
- Issue: Vol 51, No 2 (2025)
- Pages: 89-102
- Section: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/684588
- DOI: https://doi.org/10.31857/S0132344X25020028
- EDN: https://elibrary.ru/MEJVCY
- ID: 684588
Cite item
Abstract
The reactions of [Zn(Piv)2]n and [Gd(Piv)3]n or Gd(NO3)3 ∙ 6H2O with 2-hydroxypyridine (Hhp) or its 6-methyl derivative (Hmhp) afford heterometallic complexes [ZnGd(Рiv)5(Hhp)2] · 0.5H2O (I), [Zn2Gd (Рiv)6(Hhp)2NO3] ∙ 2C6H6 (II), [Zn3GdO(Рiv)7(Hmhp)2] ∙ MeCN (III) и [Zn2Gd(Рiv)6(Hmhp)2NO3] ∙ ∙ 0.5MeCN (IV) respectively. In the carboxylate metal cage of the synthesized complexes, the Hhp and Hmhp molecules in the form of 2-pyridone are coordinated by the metal atoms via the monodentate mode through the oxygen atoms. The introduction of Et3N into the reaction with [Zn(Рiv)2]n, Gd(NO3)3 ∙ 6H2O, and Hhp is found to result in the formation of compound [Zn4Gd2(OH)2(Рiv)6(hp)6(Hhp)2] (V) in which the 2-hydroxypyridine anions perform the bridging function. The molecular structures of complexes I‒V are determined by XRD (CIF files CCDC nos. 2365419–2365423).
Full Text
 
												
	                        About the authors
M. E. Nikiforova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Author for correspondence.
							Email: nikiforova.marina@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
M. A. Kiskin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: nikiforova.marina@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
A. A. Sidorov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: nikiforova.marina@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
M. A. Uvarova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: nikiforova.marina@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
I. L. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: nikiforova.marina@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Bera M.K., Sarmah S., Santra D.C. et al. // Coord. Chem. Rev. 2024. V. 501. P. 215573. https://doi.org/10.1016/j.ccr.2023.215573
- Petrus R., Kowaliński A. // Preprints. 2024. P. 2024020536. https://doi.org/10.20944/preprints202402.0536.v1
- Уварова М.А., Тайдаков И.В., Шмелев М.А. и др. // Коорд. химия. 2023. Т. 49. № 12. С. 744. https://doi.org/10.31857/S0132344X23700329 (Uvarova M.A., Taydakov I.V., Shmelev M.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 12. P. 784) https://doi.org/10.1134/s1070328423600882
- Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 7. P. 1093. https://doi.org/10.1515/pac-2019-1212
- Li Y., Yang Y.D., Ge R. et al. // Inorg. Chem. 2022, V. 61. № 23. P. 8746. https://doi.org/10.1021/acs.inorgchem.2c00644
- Wang H.L., Zhu Z.H., Peng J.M. et al. // J. Cluster Sci. 2022. V. 33. № 4. P. 1299. https://doi.org/10.1007/s10876-021-02084-7
- Mata J.A., Hahn F.E., Peris E. // Chem. Sci. 2014. V. 5. № 5. P. 1723. https://doi.org/10.1039/C3SC53126K
- Niekerk A., Chellan P., Mapolie S.F. // Eur. J. Inorg. Chem. 2019. V. 30. P. 3432. https://doi.org/10.1002/ejic.201900375
- De S., Nag S. // Rev. Inorg. Chem. 2024. V. 44. № 1. P. 1. https://doi.org/10.1515/revic-2023-0007
- López-Hernández J.E., Contel M. // Curr. Opin. Chem. Biol. 2023. V. 72. P. 102250. https://doi.org/10.1016/j.cbpa.2022.102250
- Агешина А.А., Уварова М.А., Нефедов С.Е. // Журн. неорган. химии. 2015. Т. 60. № 10. С. 1334. https://doi.org/10.7868/S0044457X15100025 (Ageshina A.A., Uvarova M.A., Nefedov S.E. // Russ. J. Inorg. Chem. 2015. V. 60. № 10. P. 1218) https://doi.org/10.1134/S0036023615100022)
- Уварова М.А., Луценко И.А., Никифорова М.Е. и др. // Коорд. химия. 2022. Т. 48. № 8. С. 451. https://doi.org/10.31857/S0132344X22080072 (Uvarova M.A., Lutsenko I.A., Nikiforova M.E. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 8. P. 457). https://doi.org/10.1134/S1070328422080073
- Зорина-Тихонова Е.Н., Ямбулатов Д.С., Кискин М.А. и др. // Коорд. химия. 2020. Т. 46. № 2. С. 67. https://doi.org/10.31857/S0132344X20020103 (Zorina-Tikhonova E.N., Yambulatov D.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 2. P. 75). https://doi.org/10.1134/S1070328420020104
- Uvarova M.A., Lutsenko I.A., Babeshkin K.A. et al. // CrystEngComm. 2023. V. 25. № 48. P. 6786. https://doi.org/10.1039/d3ce00813d
- Гольдберг А.Е., Кискин М.А., Сидоров А.А. и др. // Изв. АН. Сер. хим. 2011. № 5. С. 829 (Goldberg A.E., Kiskin M.A., Sidorov A.A. et al. // Russ. Chem. Bull. 2011. V. 60. № 5. P. 849). https://doi.org/10.1007/s11172-011-0133-8
- Lutsenko I.A., Baravikov D.E., Koshenskova K.A. et al. // RSC Adv. 2022. V. 12. № 9. P. 5173. https://doi.org/10.1039/D1RA08555G
- Rubtsova I.K., Melnikov S.N., Shmelev M.A. et al. // Mendeleev Commun. 2020. V. 30. № 6. P. 722. https://doi.org/10.1016/j.mencom.2020.11.011
- Rad N.E., Junk P., Deacon G.B., Taydakov I. V. et al. // Aust. J. Chem. 2020. V. 73. № 6. P. 520. https://doi.org/10.1071/ch19417
- Petrov P.A., Laricheva Y.A., Sukhikh T.S. et al. // New J. Chem. 2021. V. 45. № 16. P. 7047. https://doi.org/10.1039/d1nj00195g
- Сидоров А.А., Никифорова М.Е., Пахмутова Е.В. и др. // Изв. АН. Сер. хим. 2006. № 11. С. 1851 (Sidorov A.A., Nikiforova M.E., Pakhmutova E.V. et al. // Russ. Chem. Bull. 2006. V. 55. № 11. P. 1920). https://doi.org/10.1007/s11172-006-0533-3
- McConnell S., Motevalli M., Thornton P. // Polyhedron. 1995. V. 14. № 3. P. 459. https://doi.org/10.1016/0277-5387(94)00431-D
- Никифорова М.Е., Каюмова Д.Б., Малкерова И.П. и др. // Коорд. химия. 2023. Т. 49. № 5. С. 290. https://doi.org/10.31857/S0132344X22600333 (Nikiforova M.E., Kayumova D.B., Malkerova I.P. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 5. P. 286). https://doi.org/10.1134/s1070328422600528
- Nikiforova M.E., Kiskin M.A., Bogomyakov A.S. et al. // Inorg. Chem. Commun. 2011. V. 14. № 2. P. 362. https://doi.org/10.1016/j.inoche.2010.11.033
- Заузолкова Н.В., Никифорова М.Е., Кискин М.А. и др. // Изв. АН. Сер. хим. 2011. № 2. С. 267 (Zauzolkova N.V., Nikiforova M.E., Kiskin M.A. et al. // Russ. Chem. Bull. 2011. V. 60. № 2. P. 273). https://doi.org/10.1007/s11172-011-0046-6
- Rosado Piquer L., Dey S., Castilla Amorós L. et al. // Dalton Trans. 2019. V. 48. № 33. P. 12440. https://doi.org/10.1039/c9dt02567g
- Уварова М.А., Агешина А.А., Гринева А.А. и др. // Журн. неорган. химии. 2015. Т. 60. № 5. С. 633. https://doi.org/10.7868/S0044457X15050189 (Uvarova M.A., Ageshina A.A., Grineva A.A. et al. // Russ. J. Inorg. Chem. 2015. V. 60. №. 5. P. 566). https://doi.org/10.1134/S0036023615050186
- Перова Е.В., Яковлева М.A., Баранова Е.О. и др. // Журн. неорган. химии. 2010. Т. 55. № 5. С. 768 (Perova E.V., Yakovleva M.A., Baranova E.O. et al. // Russ. J. Inorg. Chem. 2010. V. 55. № 5. P. 714). https://doi.org/10.1134/S0036023610050104
- Umakoshi K., Yamauchi Y., Nakamiya K. et al. // Inorg. Chem. 2003. V. 42. № 12. P. 3907. https://doi.org/10.1021/ic026196g
- Ardizzoia G.A., La Monica G., Cenini S. et al. // Dalton Trans. 1996. V. 7. P. 1351. https://doi.org/10.1039/DT9960001351
- Miras H.N., Zhao H., Herchel R. et al. // Eur. J. Inorg. Chem. 2008. V. 2008. № 30. P. 4745. https://doi.org/10.1002/ejic.200800349
- Trenerry M.J., Wallen C.M., Brown T.R. et al. // Nat. Chem. 2021. V. 13. № 12. P. 1221. https://doi.org/10.1038/s41557-021-00797-w
- Kawamura T., Maeda M., Miyamoto M. et al. // J. Am. Chem. Soc. 1998. V. 120. № 32. P. 8136. https://doi.org/10.1021/ja9712940
- Cotton F.A., Kim Y., Yokochi A. // Inorg. Chim. Acta. 1995. V. 236. № 1‒2. P. 55. https://doi.org/10.1016/0020-1693(95)04609-D
- Фомина И.Г., Чернышев В.В., Великодный Ю.А. и др. // Изв. АН. Сер. хим. 2013. № 2. С. 429 (Fomina I.G., Chernyshev V.V., Velikodnyi Yu.A. et al. // Russ. Chem. Bull. 2013. V. 62. № 2. P. 427). https://doi.org/10.1007/s11172-013-0057-6
- Доброхотова Ж.В., Фомина И.Г., Александров Г.Г. и др. // Журн. неорган. химии. 2009. Т. 54, № 5. С. 727 (Dobrokhotova Zh.V., Fomina I.G., Aleksandrov G.G. et al. // Russ. J. Inorg. Chem. 2009. V. 54. №. 5. P. 668). https://doi.org/10.1134/S0036023609050040
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Alvarez S., Avnir D., Llunell M. et al. // New J. Chem. 2002 V. 26. P. 996. https://doi.org/10.1039/B200641N
- Boyle T.J., Raymond R., Boye D.M. et al. // Dalton Trans. 2010. V. 39. № 34. P. 7837. https://doi.org/10.1039/c002492a
- Кискин М.А., Доброхотова Ж.В., Богомяков А.С. и др. // Изв. АН. Сер. хим. 2016. № 6. С. 1488 (Kiskin M.A., Dobrokhotova Z.V., Bogomyakov A.S. et al. // Russ. Chem. Bull. 2016. V. 65, № 6. P. 1488). https://doi.org/10.1007/s11172-016-1475-z
- Li Y., Zhang C., Yu J. et al. // Inorg. Chim. Acta. 2016. V. 445. P. 110. https://doi.org/10.1016/j.ica.2016.02.035
- Boyle T.J., Raymond R., Boye D.M. et al. // Dalton Trans. 2010. V. 39. № 34. P. 8050. https://doi.org/10.1039/c002492a
- Wu B. // J. Chem. Crystallogr. 2003. V. 33. № 3. P. 203. https://doi.org/10.1023/A:1023553627215
- Cui Y., Qian Y.T., Huang J.S. // Polyhedron. 2001. V. 20. №. 15‒16. P. 1795. https://doi.org/10.1016/S0277-5387(01)00714-8
- Егоров Е.Н., Михалева Е.А., Кискин М.А. и др. // Изв. АН. Сер. хим. 2013. № 10. С. 2141 (Egorov E.N., Mikhalyova E.A., Kiskin M.A. et al. // Russ. Chem. Bull. 2013. V. 62. № 10. P. 2141). https://doi.org/10.1007/s11172-013-0313-9
- Бурковская Н.П., Орлова Е.В., Кискин М.А. и др. // Изв. АН. Сер. хим. 2011. № 12. С. 2442 (Burkovskaya N.P., Orlova E.V., Kiskin M.A. et al. // Russ. Chem. Bull. 2011. V. 60. №. 12. P. 2490 https://doi.org/10.1007/s11172-011-0384-4
- Шмелев М.А., Воронина Ю.К., Чекурова С.С. и др. // Коорд. химия. 2021. Т. 47. № 8. С. 489. https://doi.org/10.31857/S0132344X21080089 (Shmelev M.A., Voronina Yu.K., Chekurova S.S. // Russ. J. Coord. Chem. 2021. V. 47. № 8. P. 551). https://doi.org/10.1134/S1070328421080078
- Perrin D.D., Dempsey B., Serjeant E.P. pKa Prediction for Organic Acids and Bases. London: Chapman and Hall, 1981. V. 1. 146 p.
- Kiskin M.A., Varaksina E.A., Taydakov I.V. et al. // Inorg. Chim. Acta. 2018. V. 482. P. 85. https://doi.org/10.1016/j.ica.2018.05.037
- Clegg W., Harbron D. R., Homan C. M. et al. // Inorg. Chim. Acta. 1991. V. 186. № 1. P. 51. https://doi.org/10.1016/S0020-1693(00)87930-X
- Koyama H., Saito Y. // Bull. Chem. Soc. Jpn. 1954. V. 27. № 2. P. 112. https://doi.org/10.1246/bcsj.27.112
- McCowan C.S., Groy T.L., Caudle M.T. // Inorg. Chem. 2002. V. 41. № 5. P. 1120. https://doi.org/10.1021/ic010885v
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted











