Substitution of the internal AsO3– ligand in complex [{Re4As2(AsO)2}(CN)12]8–
- Authors: Pronin A.S.1, Mironov Y.V.1
- 
							Affiliations: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
 
- Issue: Vol 51, No 2 (2025)
- Pages: 114-121
- Section: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/684590
- DOI: https://doi.org/10.31857/S0132344X25020049
- EDN: https://elibrary.ru/MEGKSW
- ID: 684590
Cite item
Abstract
The reaction of the tetrahedral rhenium arsenide cluster K8[{Re4As2(AsO)2}(CN)12] with molten KF · HF is studied. The reaction affords complex K6[{Re4As2(AsO)F}(CN)12] · 3H2O · KF (I). The substitution of one (µ3-AsO)3– ligand by µ3-F– is shown to occur during the reaction, and the remained internal ligands are not involved in the reaction. The phase purity of the synthesized compound and the absence of impurities of different compositions are confirmed by phase X-ray diffraction (XRD) and mass spectrometry. The structure of complex I is determined by single-crystal XRD (CIF file CCDC no. 2362544).
Keywords
Full Text
 
												
	                        About the authors
A. S. Pronin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							Author for correspondence.
							Email: pronin@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk						
Yu. V. Mironov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: pronin@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk						
References
- Krasilnikova A.A., Shestopalov M.A., Brylev K.A. et al. // J. Inorg. Biochem. 2015. V. 144. P. 13.
- Krasilnikova A.A., Solovieva A.O., Ivanov A.A. et al. // Toxicol. Res. 2017. V. 6. № 4. P. 554.
- Cordier S., Molard Y., Brylev K.A. et al. // J. Clust. Sci. 2015. V. 26. № 1. P. 53.
- Kitamura N., Ueda Y., Ishizaka S. et al. // Inorg. Chem. 2005. V. 44. № 18. P. 6308.
- Konovalov D.I., Ivanov A.A., Vorotnikov Y.A. et al. // Inorg. Chem. 2021. V. 60. № 19. P. 14687.
- Бардин В.А., Иванов А.А.,Коновалов Д.И. и др. // Журн. cтруктур. химии. 2020. Т. 61. № 10. С. 1709 (Bardin V.A., Ivanov A.A., Konovalov D.I. et al. // J. Struct. Chem. 2020. V. 61. № 10. P. 1624.) doi: 10.1134/S0022476620100157
- Solovieva A.O., Kirakci K., Ivanov A.A. et al. // Inorg. Chem. 2017. V. 56. № 21. P. 13491.
- Gao L., Peay M.A., Gray T.G. // Chem. Mater. 2010. V. 22. № 23. P. 6240.
- Kirakci K., Shestopalov M.A., Lang K. // Coord. Chem. Rev. 2023. V. 481. P. 215048.
- Litvinova Y.M., Gayfulin Y.M., Kovalenko K.A. et al. // Inorg. Chem. 2018. V. 57. № 4. P. 2072.
- Mironov Y.V., Naumov N.G., Brylev K.A. et al. // Angew. Chem. Int. Ed. 2004. V. 43. № 10. P. 1297.
- Marchuk M.V., Vorotnikov Y.A., Ivanov A.A. et al. // Symmetry. 2022. V. 14. № 10. P. 2117.
- Seyboldt A., Enseling D., Justel T. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 45. P. 5387.
- Přibyl T., Rumlová M., Mikyšková R. et al. // Inorg. Chem. 2024. V. 63. № 9. P. 4419.
- Konovalov D.I., Novikova E.D., Ivanov A.A. et al. // Polyhedron. 2024. V. 251. P. 116874.
- Gassan A.D., Ivanov A.A., Eltsov I.V. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 30. P. 2896.
- Novikova E.D., Gassan A.D., Ivanov A.A. et al. // New J. Chem. 2022. V. 46. № 5. P. 2218.
- Vorotnikova N.A., Vorotnikov Y.A., Shestopalov M.A. // Coord. Chem. Rev. 2024. V. 500. P. 215543.
- Mikhaylov M.A., Sokolov M.N. // Eur. J. Inorg. Chem. 2019. V. 2019. № 39–40. P. 4181.
- Pronin A.S., Smolentsev A.I., Kozlova S.G. et al. // Inorg. Chem. 2019. V. 58. № 11. P. 7368.
- Pronin A.S., Gayfulin Y.M., Sukhikh T.S. et al. // Inorg. Chem. 2022. V. 61. № 49. P. 19756.
- Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2017.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
- Yang C.S., Horng H.C., Liao F.L. et al. // Chem. Commun. 1994. № 14. P. 1637.
- Horn E., Snow M. // Aust. J. Chem. 1981. V. 34. № 4. P. 737.
- Pronin A.S., Gayfulin Y.M., Smolentsev A.I. et al. // J. Clust. Sci. 2019. V. 30. № 5. P. 1253.
- Пронин А.С., Яровой С.С., Смоленцев А.И. // Изв. АН. Сер. хим. 2019. Т. 68. № 4. С. 777 (Pronin A.S., Smolentsev A.I., Mironov Y.V. // Russ. Chem. Bull. 2019. V. 68. № 4. P. 777). https://doi.org/10.1007/s11172-019-2485-4
- Пронин А.С., Яровой С.С., Смоленцев А.И. // Изв. АН. Сер. хим. 2020. Т. 69. № 11. С. 2129 (Pronin A.S., Smolentsev A.I., Mironov Y.V. // Russ. Chem. Bull. 2020. V. 69. № 11. P. 2129). https://doi.org/10.1007/s11172-020-3010-5.
- Efremova O.A., Mironov Y.V., Fedorov V.E. // Eur. J. Inorg. Chem. 2006. V. 2006. № 13. P. 2533.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted




