Influence of the Aromatic Ligand Nature and Synthesis Conditions on the Structures of the Copper Pentafluorobenzoate Complexes
- Authors: Kovalev V.V.1, Shmelev M.A.1, Kuznetsova G.N.1, Erakhtina V.I.2, Razgonyaeva G.A.1, Ivanova T.M.1, Kiskin M.A.1, Sidorov A.A.1, Eremenko I.L.1
- 
							Affiliations: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- School no. 1449 named after Hero of the Soviet Union M.V. Vodop’yanov, Moscow, Russia
 
- Issue: Vol 49, No 4 (2023)
- Pages: 229-245
- Section: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667520
- DOI: https://doi.org/10.31857/S0132344X22600503
- EDN: https://elibrary.ru/FZBNGP
- ID: 667520
Cite item
Abstract
New pentafluorobenzoate (Рfb) copper complexes with 2,3- and 3,5-lutidine (2,3- and 3,5-Lut, respectively), quinoline (Quin), and 1,10-phenanthroline (Рhen) ([Cu2(MeCN)2(Рfb)4] (I), [Cu(2,3-Lut)2(Pfb)2] (II), [Cu(3,5-Lut)4(Pfb)2] (III), [Cu(Quin)2(Pfb)2] (IV), and [Cu2(Phen)2(Pfb)4] (V)) are synthesized by the newly developed methods and characterized. The unusual heteroanionic pentafluorobenzoate benzoate (Вnz) ionic compound [Cu2(Рhen)2(Рfb)3]+(Рnz)– (VI) is synthesized. It is shown that the four-bridge binuclear metal cage of complex I is not retained in the reactions with various pyridine derivatives. In the case of such α-substituted pyridines as 2,3-lutidine and quinoline, the compositions and structures of the final products of the reactions with copper pentafluorobenzoate are independent of the initial ratio of the reagents and crystallization conditions. It is revealed by the Hirshfeld surface analysis that π···π, C–F···π, C–H···F, and F···F interactions make the major contribution to the stabilization of crystal packings of the synthesized complexes.
About the authors
V. V. Kovalev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
														Email: shmelevma@yandex.ru
				                					                																			                												                								Россия, Москва						
M. A. Shmelev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
														Email: shmelevma@yandex.ru
				                					                																			                												                								Россия, Москва						
G. N. Kuznetsova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
														Email: shmelevma@yandex.ru
				                					                																			                												                								Россия, Москва						
V. I. Erakhtina
School no. 1449 named after Hero of the Soviet Union M.V. Vodop’yanov, Moscow, Russia
														Email: shmelevma@yandex.ru
				                					                																			                												                								Россия, Москва						
G. A. Razgonyaeva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
														Email: shmelevma@yandex.ru
				                					                																			                												                								Россия, Москва						
T. M. Ivanova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
														Email: shmelevma@yandex.ru
				                					                																			                												                								Россия, Москва						
M. A. Kiskin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
														Email: shmelevma@yandex.ru
				                					                																			                												                								Россия, Москва						
A. A. Sidorov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
														Email: shmelevma@yandex.ru
				                					                																			                												                								Россия, Москва						
I. L. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
							Author for correspondence.
							Email: shmelevma@yandex.ru
				                					                																			                												                								Россия, Москва						
References
- Zhang Z., Zaworotko M.J. // Chem. Soc. Rev. 2014. V. 43. P. 5444.
- Bradberry S.J., Savyasachi A.J., Martinez-Calvo M., Gunnlaugsson T. // Coord. Chem. Rev. 2014. V. 273–274. P. 226.
- Chen D.-M., Zhang N.-N., Liu C.-S., Du M. // J. Mater. Chem. C. 2017. V. 5. P. 2311.
- Kohnke F.H., Mathias J.P., Fraser Stoddart J. // Angew. Chem. 1989. V. 28. № 8. P. 1103.
- Bazhina E.S., Bovkunova A.A., Shmelev M.A. et al. // Polyhedron. 2022. V. 228. Art. 116174.
- Barry D.E., Caffreya D.F., Gunnlaugsson T. // Chem. Soc. Rev. 2016. V. 45. P. 3244.
- Su J., Yuan S., Cheng Y.-X. et al. // Chem. Sci. 2021. V. 12. P. 14254.
- Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. // Russ. Chem. Bull. 2021. V. 7. № 5. P. 830.
- Bondarenko M.A., Novikov A.S., Sokolov M.N., Adonin S.A. // Organics. 2022. V. 10. № 10. P. 151.
- Adonin S.A., Bondarenko M.A., Novikov A.S. et al. // Crystals. 2020. V. 10. P. 289.
- Shmelev M.A., Chistyakov A.S., Razgonyaeva G.A. et al. // Crystals. 2022. V. 12. P. 508.
- Zhou W.-L., Chen Y., Lin W., Liu Y. // Chem. Commun. 2021. V. 57 P. 11443.
- Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. P. 213094.
- Adonin S.A., Novikov A.S., Sokolov M.N., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 302.
- Adonin S.A., Novikov A.S., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 37.
- Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. Art. 194.
- Sharma R.P., Saini A., Kumar S. et al. // J. Mol. Struct. 2017. V. 1128. P. 135.
- Shmelev M.A., Voronina Yu.K., Chekurova S. S. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 551.
- Kong Y.-J., Han L.-J., Fan L.-T. et al. // J. Fluor. Chem. 2016. V. 186. P. 40.
- Han L.-J., Kong Y.-J. // Z. Anorg. Allg. Chem. 2014. V. 640. № 10. P. 2007.
- Shmelev M.A., Voronina Yu. K. Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 224.
- Malkerova I.P., Kayumova D.B., Belova E.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 10. P. 608.
- Pinto C.B., Dos Santos L.H.R., Rodrigues B.L. // J. A-ppl. Crystallogr. 2020. V. 53. P. 1321.
- Sen S., Saha M.K., Gupta T. et al. // J. Chem. Crystallogr. 1998. V. 28. P. 771.
- Andruh M., Roesky H.W., Noltemeyer M., Schmidt H.-G. // Polyhedron. 1993. V. 12. № 23. P. 2901.
- Harding M.M. // Acta Crystallogr. D. 2000. V. 56. P. 857.
- Bondarenko M.A., Abramov P.A., Novikov A.S. et al. // Polyhedron. 2022. V. 214. Art. 15644.
- Li Z., Yuan Y., Zhang Y. et al. // Z. Anorg. Allg. Chem. 2017. V. 643. № 10. P. 647.
- Sanchez-Sala M., Pons J., Álvarez-Larena Á. et al. // ChemistrySelect. 2017. V. 2. № 35. P. 11574.
- Obaleye J.A., Ajibola A.A., Bernardus V.B., Hosten E.C. // J. Mol. Struct. 2020. V. 1203. Art.127435.
- Rajakannu P., Kaleeswaran D., Banerjee S. et al. // Inorg. Chim. Acta. 2019. V. 486. P. 283.
- Shmelev M.A., Gogoleva N.V., Kuznetsova G.N. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 8. P. 557.
- Larionov S.V., Glinskaya L.A., Klevtsova R.F. et al. // Z. Neorg. Khim. 1991. V. 36. P. 2514.
- Han L.-J., Kong Y.-J., Huang M.-M. // Inorg. Chim. Acta. 2020. V. 514. Art. 120019.
- Hashim I.I., Scattolin T., Tzouras N.V. et al. // Dalton Trans. 2022. V. 51. P. 231.
- Makoto H., Yoshiyuki I., Taku Y. et al. // Bull. Chem. Soc. Jpn. 2009. V. 82. № 10. P. 1277.
- Han L.-J., Kong Y.-J. // Acta Crystallogr. C. 2014. V. 70. № 11. P. 1017.
- Sharma R.P., Saini A., Singh S. et al. // J. Fluor. Chem. 2010. V. 131. № 4. P. 456.
- Ge C., Zhang X., Yu F. et al. // J. Chem. Crystallogr. 2008. V. 38. P. 501.
- Kuznetsova G.N., Nikolaevskii S.A., Yambulatov D.S. et al. // J. Struct. Chem. V. 62. № 2. P. 184.
- SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
- Spek A.L. // Acta Crystallogr. D. 2009. V. 65. № 2. P. 148.
- Dolomanov O.V., Bourhis L.J., Gildea R. et al. // J. A-ppl. Crystallogr. 2009. V. 42. P. 339.
- Casanova D., Llunell M., Alemany P., Alvarez S. // Chem. Eur. J. 2005. V. 11. P. 1479.
- Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Cryst. 2021. V. 54. P. 1006.
- Edwards A.J., Mackenzie C.F., Spackman P.R. et al. // Faraday Discuss. 2017. V. 203. P. 93.
- Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539.
- Shmelev M.A., Polunin R.A. Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. P. 4296.
- Belousov Y.A., Kiskin M.A., Sidoruk A.V. et al. // Aust. J. Chem. 2022. V. 75. № 9. P. 572.
- Shmelev M.A., Kiskin M.A., Voronina J.K. et al. // Materials. 2020. V. 13. № 24. P. 5689.
- Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 7. P. 1093.
- Bovkunova A.A., Bazhina E., Evstifeev I.S. et al. // Dalton Trans. 2021. V. 50. P. 12275.
- Pushikhina O.S., Kozlyakova E.S., Karpova E.V., Tafeenko V.A. // Z. Anorg. Allg. Chem. 2021. V. 647. № 22. P. 2023.
- Li Y., Zhang C., Yu J.-W. et al. // Inorg. Chim. Acta. 2016. V. 445. P. 110.
- Ge C., Zhang X., Yin J., Zhang R. // Chin. J. Chem. 2010. V. 28. № 10. P. 2083.
- Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // Inorg. Chim. Acta. 2021. V. 515. P. 120050.
- Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // ChemSelect. 2020. V. 5. № 28. P. 8475.
- Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. Chem. Bull. 2020. V. 69. P. 1544.
- Melnikov S.N., Evstifeev I.S., Nikolaveskii S.A. et al. // New J. Chem. 2021. V. 45. P. 13349.
- Nikolaevskii S.A., Petrov P.A., Sukhikh T.S. et al. // Inorg. Chim. Acta. 2020. V. 508. P. 119643.
- Gogoleva N.V., Kuznetsova G.N., Shmelev M.A. et al. // J. Solid State Chem. 2021. V. 294. Art. 121842.
- Wu B., Lu W., Zheng X. // Transition Met. Chem. 2003. V. 28. P. 323.
- Shmelev M.A., Kuznetsova G.N., Dolgushin F.M. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 127.
- Yambulatov D.S., Nikolaevskii S.A., Lutsenko I.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 772.
- Zeng Z., Cai J., Li F. et al. // RSC Adv. 2021. V. 11. P. 40040.
- Sharma P., Dutta D., Gomila R.M. et al. // Polyhedron. 2021. V. 208. Art. 115409.
- Lah N., Giester G., Segedin P., Murn A. et al. // Acta Crystallogr. C. 2001. V. 57. P. 546.
- Davey G., Stephens F.S. // J. Chem. Soc. A. 1971. P. 1917.
- Davey G., Stephens F.S. // J. Chem. Soc. A. 1970. P. 2803.
- Kozlevcar B., Lah N., Zlindra D. et al. // Acta Chim. Slov. 2001. V. 48. P. 363.
- Kozlevcar B., Murn A., Podlipnik K. et al. // Croat. Chem. Acta. 2004. V. 77. P. 613.
- Buijs W., Comba P., Corneli D. et al. // Eur. J. Inorg. Chem. 2001. P. 3143.
- Li L.-M., Guo H.-M., Li Y.-F. // Z. Krist New – Cryst. Struct. 2012. V. 227. P. 257.
- Dickie D.A., Schatte G., Jennings M.C. et al. // Inorg. Chem. 2006. V. 45. № 4. P. 1646.
- Pradilla S.J., Chen H.W., Koknat F.W., Fackler J.P., Jr. // Inorg. Chem. 1979. V. 18. № 12. P. 3519.
- Gajewska M.J., Ching W.-M., Wen Y.-S., Hung C.-H. // Dalton Trans. 2014. V. 43. P. 14726.
- Ghosh S.K., Bharadwaj P.K. // Inorg. Chem. 2004. V. 43. № 22. P. 6887.
- Pretorius J.A., Boeyens J.C.A. // J. Inorg. Nucl. Cchem. 1978. V. 40. № 10. P. 1745.
- Baruah J.B., Singh W., Karmakar A. // J. Mol. Struct. 2008. V. 892. № 1–3. P. 84.
- Neary M.C., Parkin G. // Polyhedron. 2016. V. 116. P. 189.
- Edema J.J.H., Hao S., Gambarotta S., Bensimon C. // Inorg. Chem. 1991. V. 30. № 12. P. 2584.
- Li L.-M., Jian F.-F., Ren X.-Y. // Acta Crystrallog. E. V. 65. P. m1041.
- Çelenligil-Çetin R., Staples R. J., Stavropoulos P. // Inorg. Chem. 2000. V. 39. № 25. P. 5838.
- Singh B., Long J. R., Papaefthymiou G.C., Stavropoulos P. // J. Am. Chem. Soc. 1996. V. 118. № 24. P. 5824.
- Tapper A.E., Long J.R., Staples R.J., Stavropoulos P. // Angew. Chem. 2000. V. 39. № 13. P. 2343.
- Morozov I.V., Karpova E.V., Glazunova T.Yu. et al. // Russ. J. Coord. Chem. 2016. V. 42. P. 647.
- Hubner K., Roesky H.W., Noltemeyer M., Bohra R. // Chem. Ber. 1991. V. 124. P. 515.
- He X., Chen F., Zhang D. et al. // Z. Anorg. Allg. Chem. 2019. V. 645. № 23. P. 1341.
- Sánchez-Féreza F., Bayés L., Font-Bardia M., Pons J. // Inorg. Chim. Acta. 2019. V. 494. P. 112.
- Iqbala M., Sirajuddin M., Ali S. et al. // Inorg. Chim. Acta. 2016. V. 440. P. 129.
- Iqbal M., Ali S., Tahir M.N. // J. Struct. Chem. 2018. V. 59. P. 1619.
- Ghosh D., Dhibar S., Dey A. et al. // ChemSelect. 2020. V. 5. № 1. P. 75.
- Han L.-J., Kong Y.-J., Yan T.-J. et al. // Dalton Trans. 2016. V. 45. P. 18566.
- Baur A., Bustin K. A., Aguilera E. et al. // Org. Chem. Front. 2017. V. 4. P. 5194.
- Eremina J.A., Lider E.V., Sukhikh T.S. et al // Inorg. Chim. Acta. 2020. V. 510. № 119778.
- Mushtaq A., Ali S., Nawaz Tahir M., Haider A. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1365.
- Wang K.-H., Gao E.-J. // Inorg. Chim. Acta. 2018. V. 482. P. 221.
- Zhao X., Liang D., Liu S. et al. // Inorg. Chem. 2008. V. 47. № 16. P. 7133.
- Zhang H.-R., Gu J.-Z., Kirillova M.V., Kirillov A.M. // Inorg. Chem. Front. 2021. V. 8. P. 4209.
- Jiang X., Xia H., Zhu Y.-F. et al. // Z. Anorg. Allg. Chem. 2011. V. 637. № 14–15. P. 2273.
- Mehrani A., Morsali A., Ebrahimpour P. // J. Coord. Chem. 2013. V. 66. № 5. P. 856.
- Revathi P., Mohan J.S., Balakrishnan T. et al. // Acta Crystallogr. E. 2019. V. 75. P. 134.
- Orts-Arroyo M., Castro I., Lloreta F., Martínez-Lillo J. // Dalton Trans. 2020. V. 49. P. 9155.
- Lazarou K.N., Chadjistamatis I., Terzis A. et al. // Inorg. Chim. Acta. 2010. V. 363. № 1. P. 107.
- Le X.-Y., Zhou X.-H., Yu K.-B., Ji L.-N. // Chin. J. Chem. 2000. V. 18. P. 638.
- Lazarou K.N., Chadjistamatis I., Terzis A. // Polyhedron. 2010. V. 29. № 2. P. 833.
- Li D.-P., Liang X.-Q., Xu Y. et al. // Chin. J. Struct. Chem. 2013. V. 32. P. 1724.
- Tian Y.-P., Zhang X.-J., Wu J.-Y. et al. // New J. Chem. 2002. V. 26. P. 1468.
- Ghosh A.K., Ghoshal D., Zangrando E. et al. // Inorg. Chem. 2007. V. 46. № 8. P. 3057.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					








