Half-Sandwich Iminophosphonamide Rhodium Complexes as Highly Efficient Catalysts for Dehydrogenation of Dimethylamine-Borane
- Авторлар: Nekrasov R.I.1, Peganova T.A.1, Kal´sin A.M.1, Belkova N.V.1
- 
							Мекемелер: 
							- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
 
- Шығарылым: Том 50, № 6 (2024)
- Беттер: 394-401
- Бөлім: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667594
- DOI: https://doi.org/10.31857/S0132344X24060053
- EDN: https://elibrary.ru/MVDOVM
- ID: 667594
Дәйексөз келтіру
Аннотация
The dehydrogenation of dimethylamine-borane (DMAB) catalyzed by the iminophosphonamide rhodium(III) complexes [Cp*RhCl{Ph2P(N–p-Tol)(NR)}] (Iа, R = p-Tol; Ib, R = Me) in situ formed fulvene [(η4-C5Me4CH2)Rh(NPN)] (IIa, IIb) and diene [(η4-C5Me5H)Rh(NPN)] (IIIa, IIIb) rhodium(I) derivatives is studied. Catalysts IIIa and IIIb turn out to be the most active and demonstrate a TOF activity of 110 (IIIа) and 540 h–1 (IIIb) at 40°С in toluene. The activity decreases significantly in more polar and coordinating THF. At the same time, the rate of DMAB dehydrogenation by complexes Iа and Ib is lower by 10–30 times, and fulvene complexes Iа and Ib are rapidly deactivated after the active initial period (<20% conversion). The kinetic studies show that the reaction has the first order with respect to the substrate and catalyst. The model 11В NMR experiments confirm that the reaction proceeds via the intermediate formation of a monomer Me2N=BH2, which rapidly dimerizes to (Me2N–BH2)2. The mechanism of DMAB dehydrogenation with the formation of unstable hydride intermediate [Cp*RhH{Ph2P(N–p-Tol)(NR)}] (IVa, IVb) is proposed on the basis of the preliminarily 31Р NMR results and published data.
Толық мәтін
 
												
	                        Авторлар туралы
R. Nekrasov
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
														Email: nataliabelk@ineos.ac.ru
				                					                																			                												                	Ресей, 							Moscow						
T. Peganova
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
														Email: nataliabelk@ineos.ac.ru
				                					                																			                												                	Ресей, 							Moscow						
A. Kal´sin
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
														Email: nataliabelk@ineos.ac.ru
				                					                																			                												                	Ресей, 							Moscow						
N. Belkova
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
							Хат алмасуға жауапты Автор.
							Email: nataliabelk@ineos.ac.ru
				                					                																			                												                	Ресей, 							Moscow						
Әдебиет тізімі
- Colebatch A.L., Weller A.S. // Chem. Eur. J. 2019. V. 25. P. 1379. https://doi.org/10.1002/chem.201804592
- Staubitz A., Robertson A.P.M., Manners I. // Chem. Rev. 2010. V. 110. p. 4079. https://doi.org/10.1021/cr100088b
- Du V.A., Jurca T., Whittell G.R., Manners I. // Dalton Trans. 2016. V. 45. P. 1055. https://doi.org/10.1039/C5DT03324A
- Resendiz-Lara D.A., Stubbs N.E., Arz M.I. et al. // Chem. Commun. 2017. V. 53. P. 11701.
- Kumar A., Daw P., Milstein D. et al. // Chem. Rev. 2022. V. 122. P. 385. https://doi.org/10.1021/acs.chemrev.1c00412
- Alig L., Fritz M., Schneider S. et al. // Chem. Rev. 2019. V. 119. P. 2681. https://doi.org/10.1021/acs.chemrev.8b00555
- Glüer A., Förster M., Celinski V. R. et al. // ACS Catal. 2015. V. 5. P. 7214. https://doi.org/10.1021/acscatal.5b02406
- Luconi L., Osipova E. S., Giambastiani G. et al. // Organometallics. 2018. V. 37. P. 3142. https://doi.org/10.1021/acs.organomet.8b00488
- Todisco., S., Luconi., L., Giambastiani., G et al. // Inorg. Chem. 2017. V. 56. P. 4296. https://doi.org/10.1021/acs.inorgchem.6b02673
- Titova. E.M., Osipova. E.S., Pavlov. A.A. et al. // ACS Catal. 2017. V. 7. P. 2325. https://doi.org/10.1021/acscatal.6b03207
- Sewell L.J., Huertos M.A., Dickinson M.E. et al. // Inorg. Chem. 2013. V. 52. P. 4509. https://doi.org/10.1021/ic302804d
- Johnson H.C., Leitao E.M., Whittell G.R. et al. // J. Am. Chem. Soc. 2014. V. 136. P. 9078. https://doi.org/10.1021/ja503335g
- Douglas T.M., Chaplin A.B., Weller A S. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 15440. http://dx.doi.org/10.1021/ja906070r
- Kirkina V.A., Osipova E.S., Filippov O.A. et al. // Mendeleev Commun. 2020. V. 30. P. 276. https://doi.org/10.1016/j.mencom.2020.05.004
- Brodie C.N., Sotorrios L., Boyd T.M. et al. // ACS Catal. 2022, vol. 12. P. 13050. https://doi.org/10.1021/acscatal.2c03778
- Brodie C.N., Boyd T.M., Sotorríos L. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 21010. https://doi.org/10.1021/jacs.1c10888
- White C., Yates A., Maitlis P.M. et al. // Inorg. Synth. 1992. V. 29. P. 228. https://doi.org/10.1002/9780470132609.ch53
- Nekrasov R.I., Peganova T.A., Fedyanin I.V. et al. // Inorg. Chem. 2022. V. 61. P. 16081. https://doi.org/10.1021/acs.inorgchem.2c02478
- Kruger C.R., Niederprum H. // Inorg. Synth. 1966. V. 8. P. 15.
- Pal S., Kusumoto S., Nozaki K. // Organometallics. 2018. V. 37. P. 906. https://doi.org/10.1021/acs.organomet.7b00889
- Sinopalnikova I.S., Peganova T.A., Belkova N.V. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. P. 2285. https://doi.org/10.1002/ejic.20170134423
- Pal S., Iwasaki T., Nozaki K. // Dalton Trans. 2021, V. 50. P. 7938. https://doi.org/10.1039/D1DT01705E
- Dallanegra R., Robertson A.P.M., Chaplin A. B. et al. // Chem. Commun. 2011. V. 47. P. 3763. https://doi.org/10.1039/C0CC05460G
- Gulyaeva E.S., Osipova E.S., Kovalenko S.A. et al. // Chem. Sci. 2024. V. 15. P. 1409. https://doi.org/10.1039/D3SC05356C
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді






