Molecular Switches of the LD-CISSS Type Based on Ni(II) Azomethine Bis-Chelate Complexes. Quantum Chemical Modeling

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

(DFT/B3LYP/6-311++G(d,p)) calculations were performed to study Ni(II) azomethine bis-chelates with photoactive moieties (imidazole and benzimidazole derivatives of azo compounds, azomethines, and stilbenes) exhibiting the behavior of molecular magnetic switches by the light-driven coordination-induced spin state switching (LD-CISSS) mechanism. The structural and energy characteristics of the complexes favorable to or restricting the applicability of these complexes as molecular switches were determined.

Sobre autores

N. Kharabayev

Research Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia

Email: nkharabaev@mail.ru
Россия, Ростов-на-Дону

A. Starikov

Research Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia

Email: nkharabaev@mail.ru
Россия, Ростов-на-Дону

V. Minkin

Research Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia

Autor responsável pela correspondência
Email: nkharabaev@mail.ru
Россия, Ростов-на-Дону

Bibliografia

  1. Aldoshin S.M. // Russ. Chem. Bull. 2008. № 57. P. 718.
  2. Sato O., Tao J., Zhang Y.-Z. // Angew. Chem. Int. Ed. 2007. V. 46. № 13. P. 2152.
  3. Minkin V.I., Starikov A.G. // Russ. Chem. Bull. 2015. V. 64. № 3. P. 475.
  4. Tezgerevska T., Alley K.G., Boskovic C. // Coor. Chem. Rev. 2014. V. 268. P. 23.
  5. Milek M., Heinemann F.W., Khusniyarov M.M. // Inorg. Chem. 2013. V. 52. P. 1585.
  6. Kaszub W., Marino A., Lorenc M. et al. // Angew. Chem. Int. Ed. 2014. V. 53. № 40. P. 10636.
  7. Dommaschk M., Peters M., Gutzeit F. et al. // J. Am. Chem. Soc. 2015. V. 137. P. 7552.
  8. Decurtins S., Gütlich P., Hasselbach K.M. et al. // Inorg. Chem. 1985. V. 24. № 14. P. 2174.
  9. Roux C., Zarembowitch J., Gallois B. et al. // Inorg. Chem. 1994. V. 33. P. 2273.
  10. Venkataramani S., Jana U., Dommaschk M. et al. // Science. 2011. V. 331. P. 445.
  11. Thies S., Sell H., Schutt C. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 16243.
  12. Thies S., Sell H., Bornholdt C. et al. // Chem. Eur. J. 2012. V. 18. P. 16358.
  13. Dommaschk M., Schutt C., Venkataramani S. et al. // Dalton Trans. 2014. V. 43. P. 17395.
  14. Heitmann G., Schutt C., Herges R. // Eur. J. Org. Chem. 2016. P. 3817.
  15. Jameson G.B., March F.C., Robinson W.T., Koon S.S. // Dalton Trans. 1978. P. 185.
  16. Klaß M., Krahmer J., Näther C., Tuczek F. // Dalton Trans. 2018. V. 47. P. 1261.
  17. Brandenburg H., Krahmer J., Fischer K. et al. // Eur. J. Inorg. Chem. 2018. P. 576.
  18. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Revision D.01. Wallingford (CT, USA): Gaussian, Inc., 2013.
  19. Parr R., Yang W. Density-Functional Theory of Atoms and Molecules. N.Y.: Oxford Univ. Press., 1989. 333 p.
  20. Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098.
  21. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.
  22. Harvey J.N., Aschi M., Schwarz H., Koch W. // Theor. Chem. Acc. 1998. V. 99. № 2. P. 95.
  23. Zhurko G.A., Zhurko D.A. Chemcraft. Version 1.6. URL: http://www.chemcraftprog.com

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (46KB)
3.

Baixar (43KB)
4.

Baixar (528KB)
5.

Baixar (438KB)
6.

Baixar (421KB)
7.

Baixar (403KB)

Declaração de direitos autorais © Н.Н. Харабаев, А.Г. Стариков, В.И. Минкин, 2023