Halide Complexes [(2-Br-5-MePy)2ZnX2] (X = Cl, Br): Structure and Noncovalent Interactions in the Crystal Structure
- Autores: Vershinin M.A.1, Novikov A.S.2,3, Adonin S.A.1
-
Afiliações:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- St. Petersburg State University, St. Petersburg, Russia
- Peoples’ Friendship University of Russia, Moscow, Russia
- Edição: Volume 49, Nº 5 (2023)
- Páginas: 298-302
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667513
- DOI: https://doi.org/10.31857/S0132344X22600369
- EDN: https://elibrary.ru/POTLLQ
- ID: 667513
Citar
Resumo
The heteroligand complexes [(2-Br-5-MePy)2ZnX2] (X = Cl (I), Br (II)) were prepared by the reaction of zinc(II) chloride or bromide with 2-bromo-5-methylpyridine and studied by X-ray diffraction (CCDC nos. 2204966 (I) and 2204967 (II)). The crystals of I and II contain Cl···Br and Br···Br halogen bonds, which connect the [MX2L2] moieties into supramolecular chains. The energies of these noncovalent interactions were estimated using quantum chemical calculations.
Palavras-chave
Sobre autores
M. Vershinin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: adonin@niic.nsc.ru
Россия, Новосибирск
A. Novikov
St. Petersburg State University, St. Petersburg, Russia; Peoples’ Friendship University of Russia, Moscow, Russia
Email: adonin@niic.nsc.ru
Россия, Санкт-Петербург; Россия, Москва
S. Adonin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Autor responsável pela correspondência
Email: adonin@niic.nsc.ru
Россия, Новосибирск
Bibliografia
- Desiraju G.R., Ho P.S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. P. 1711.
- Orlova A.V., Ahiadorme D.A., Laptinskaya T.V., Kononov L.O. // Russ. Chem. Bull. 2021. V. 70. P. 2214.
- Shestimerova T.A., Golubev N.A., Grigorieva A.V. // Russ. Chem. Bull. 2021. V. 70. P. 39.
- Isaev A.N. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 2394.
- Novikov A.S., Gushchin A.L. // J. Struct. Chem. 2021. V. 62. P. 1325.
- Bartashevich E.V., Sobalev S.A., Matveychuk Y.V., Tsirelson V.G. // J. Struct. Chem. 2021. V. 62. P. 1607.
- Bokach N.A., Suslonov V.V., Eliseeva A.A. et al. // Cry-stEngComm. 2020. V. 22. P. 4180.
- Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // Dalton Trans. 2020. V. 49. P. 356.
- Farris P.C., Wall A.D., Chellali J.E. et al. // J. Coord. Chem. 2018. V. 71. P. 2487.
- Awwadi F.F., Turnbull M.M., Alwahsh M.I., Haddad S.F. // New J. Chem. 2018. V. 42. P. 10642.
- Awwadi F.F., Haddad S.F., Turnbull M.M. et al. // Cry-stEngComm. 2013. V. 15. P. 3111.
- Wu W.X., Wang H., Jin W.J. // CrystEngComm. 2020. V. 22. P. 5649.
- Sivchik V.V., Solomatina A.I., Chen Y.-T. et al. // Angew. Chem. Int. Ed. 2015. V. 54. P. 14057.
- Liu R., Gao Y.J., Jin W.J. // Acta Crystallogr. B. 2017. V. 73. P. 247.
- Katlenok E.A., Haukka M., Levin O.V. et al. // Chem. Eur. J. 2020. V. 26. P. 7692.
- Torubaev Y.V., Skabitsky I.V. // CrystEngComm. 2020. V. 22. P. 6661.
- Rozhkov A.V., Novikov A.S., Ivanov D.M. et al. // Cryst. Growth Des. 2018. V. 18. P. 3626.
- Kryukova M.A., Sapegin A.V., Novikov A.S. et al. // Crystals. 2020. V. 10. P. 371.
- Zelenkov L.E., Ivanov D.M., Avdontceva M.S. et al. // Z. Krist. Cryst. Mater. 2019. V. 234. P. 9.
- Novikov A.S., Ivanov D.M., Avdontceva M.S., Kukushkin V.Y. // CrystEngComm. 2017. V. 19. P. 2517.
- Torubaev Y.V., Skabitsky I.V. // Z. Krist. Cryst. Mater. 2020. V. 235. P. 599.
- Truong K.-N., Rautiainen J.M., Rissanen K., Puttreddy R. // Cryst. Growth Des. 2020. V. 20. P. 5330.
- Torubaev Y.V., Skabitskiy I.V., Pavlova A.V., Pasynskii A.A. // New J. Chem. 2017. V. 41. P. 3606.
- Shestimerova T.A., Yelavik N.A., Mironov A.V. et al. // Inorg. Chem. 2018. V. 57. P. 4077.
- Eich A., Köppe R., Roesky P.W., Feldmann C. // Eur. J. Inorg. Chem. 2019. P. 1292.
- Suslonov V.V., Soldatova N.S., Ivanov D.M. et al. // Cryst. Growth Des. 2021. V. 21. P. 5360.
- Soldatova N.S., Suslonov V.V., Kissler T.Y. et al. // Crystals. 2020. V. 10. P. 230.
- Aliyarova I.S., Ivanov D.M., Soldatova N.S. et al. // Cryst. Growth Des. 2021. V. 21. P. 1136.
- Soldatova N.S., Postnikov P.S., Suslonov V.V. et al. // Org. Chem. Front. 2020. V. 7. P. 2230.
- Hu C., Li Q., Englert U. // CrystEngComm. 2003. V. 5. P. 519.
- Wang A., Englert U. // Acta Crystallogr. C. 2017. V. 73. P. 803.
- Hu C., Kalf I., Englert U. // CrystEngComm. 2007. V. 9. P. 603.
- Zordan F., Brammer L. // Cryst. Growth Des. 2006. V. 6. P. 1374.
- Awwadi F.F., Alwahsh M.I., Turnbull M.M. et al. // Dalton Trans. 2021. V. 50. P. 4167.
- Puttreddy R., von Essen C., Rissanen K. // Eur. J. Inorg. Chem. 2018. P. 2393.
- Puttreddy R., von Essen C., Peuronen A. et al. // Cr-ystEngComm. 2018. V. 20. P. 1954.
- Vershinin M.A., Rakhmanova M.I., Novikov A.S. et al. // Molecules. 2021. V. 26. P. 3393.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Da Chai J., Head-Gordon M. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 6615.
- Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. V. 120. P. 215.
- Barros C.L., de Oliveira P.J.P., Jorge F.E. et al. // Mol. Phys. 2010. V. 108. P. 1965.
- Bader R.F.W. // Chem. Rev. 1991. V. 91. P. 893.
- Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. P. 580.
- Bondi A. // J. Phys. Chem. 1966. V. 70. P. 3006.
- Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. P. 5806.
- Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. P. 2478.
- Kinzhalov M.A., Kashina M.V., Mikherdov A.S. et al. // Angew. Chem. Int. Ed. 2018. V. 57. P. 12785.
- Bartashevich E.V, Tsirelson V.G. // Russ. Chem. Rev. 2014. V. 83. P. 1181.
Arquivos suplementares
