Halide Complexes [(2-Br-5-MePy)2ZnX2] (X = Cl, Br): Structure and Noncovalent Interactions in the Crystal Structure

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The heteroligand complexes [(2-Br-5-MePy)2ZnX2] (X = Cl (I), Br (II)) were prepared by the reaction of zinc(II) chloride or bromide with 2-bromo-5-methylpyridine and studied by X-ray diffraction (CCDC nos. 2204966 (I) and 2204967 (II)). The crystals of I and II contain Cl···Br and Br···Br halogen bonds, which connect the [MX2L2] moieties into supramolecular chains. The energies of these noncovalent interactions were estimated using quantum chemical calculations.

Sobre autores

M. Vershinin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: adonin@niic.nsc.ru
Россия, Новосибирск

A. Novikov

St. Petersburg State University, St. Petersburg, Russia; Peoples’ Friendship University of Russia, Moscow, Russia

Email: adonin@niic.nsc.ru
Россия, Санкт-Петербург; Россия, Москва

S. Adonin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Autor responsável pela correspondência
Email: adonin@niic.nsc.ru
Россия, Новосибирск

Bibliografia

  1. Desiraju G.R., Ho P.S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. P. 1711.
  2. Orlova A.V., Ahiadorme D.A., Laptinskaya T.V., Kononov L.O. // Russ. Chem. Bull. 2021. V. 70. P. 2214.
  3. Shestimerova T.A., Golubev N.A., Grigorieva A.V. // Russ. Chem. Bull. 2021. V. 70. P. 39.
  4. Isaev A.N. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 2394.
  5. Novikov A.S., Gushchin A.L. // J. Struct. Chem. 2021. V. 62. P. 1325.
  6. Bartashevich E.V., Sobalev S.A., Matveychuk Y.V., Tsirelson V.G. // J. Struct. Chem. 2021. V. 62. P. 1607.
  7. Bokach N.A., Suslonov V.V., Eliseeva A.A. et al. // Cry-stEngComm. 2020. V. 22. P. 4180.
  8. Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // Dalton Trans. 2020. V. 49. P. 356.
  9. Farris P.C., Wall A.D., Chellali J.E. et al. // J. Coord. Chem. 2018. V. 71. P. 2487.
  10. Awwadi F.F., Turnbull M.M., Alwahsh M.I., Haddad S.F. // New J. Chem. 2018. V. 42. P. 10642.
  11. Awwadi F.F., Haddad S.F., Turnbull M.M. et al. // Cry-stEngComm. 2013. V. 15. P. 3111.
  12. Wu W.X., Wang H., Jin W.J. // CrystEngComm. 2020. V. 22. P. 5649.
  13. Sivchik V.V., Solomatina A.I., Chen Y.-T. et al. // Angew. Chem. Int. Ed. 2015. V. 54. P. 14057.
  14. Liu R., Gao Y.J., Jin W.J. // Acta Crystallogr. B. 2017. V. 73. P. 247.
  15. Katlenok E.A., Haukka M., Levin O.V. et al. // Chem. Eur. J. 2020. V. 26. P. 7692.
  16. Torubaev Y.V., Skabitsky I.V. // CrystEngComm. 2020. V. 22. P. 6661.
  17. Rozhkov A.V., Novikov A.S., Ivanov D.M. et al. // Cryst. Growth Des. 2018. V. 18. P. 3626.
  18. Kryukova M.A., Sapegin A.V., Novikov A.S. et al. // Crystals. 2020. V. 10. P. 371.
  19. Zelenkov L.E., Ivanov D.M., Avdontceva M.S. et al. // Z. Krist. Cryst. Mater. 2019. V. 234. P. 9.
  20. Novikov A.S., Ivanov D.M., Avdontceva M.S., Kukushkin V.Y. // CrystEngComm. 2017. V. 19. P. 2517.
  21. Torubaev Y.V., Skabitsky I.V. // Z. Krist. Cryst. Mater. 2020. V. 235. P. 599.
  22. Truong K.-N., Rautiainen J.M., Rissanen K., Puttreddy R. // Cryst. Growth Des. 2020. V. 20. P. 5330.
  23. Torubaev Y.V., Skabitskiy I.V., Pavlova A.V., Pasynskii A.A. // New J. Chem. 2017. V. 41. P. 3606.
  24. Shestimerova T.A., Yelavik N.A., Mironov A.V. et al. // Inorg. Chem. 2018. V. 57. P. 4077.
  25. Eich A., Köppe R., Roesky P.W., Feldmann C. // Eur. J. Inorg. Chem. 2019. P. 1292.
  26. Suslonov V.V., Soldatova N.S., Ivanov D.M. et al. // Cryst. Growth Des. 2021. V. 21. P. 5360.
  27. Soldatova N.S., Suslonov V.V., Kissler T.Y. et al. // Crystals. 2020. V. 10. P. 230.
  28. Aliyarova I.S., Ivanov D.M., Soldatova N.S. et al. // Cryst. Growth Des. 2021. V. 21. P. 1136.
  29. Soldatova N.S., Postnikov P.S., Suslonov V.V. et al. // Org. Chem. Front. 2020. V. 7. P. 2230.
  30. Hu C., Li Q., Englert U. // CrystEngComm. 2003. V. 5. P. 519.
  31. Wang A., Englert U. // Acta Crystallogr. C. 2017. V. 73. P. 803.
  32. Hu C., Kalf I., Englert U. // CrystEngComm. 2007. V. 9. P. 603.
  33. Zordan F., Brammer L. // Cryst. Growth Des. 2006. V. 6. P. 1374.
  34. Awwadi F.F., Alwahsh M.I., Turnbull M.M. et al. // Dalton Trans. 2021. V. 50. P. 4167.
  35. Puttreddy R., von Essen C., Rissanen K. // Eur. J. Inorg. Chem. 2018. P. 2393.
  36. Puttreddy R., von Essen C., Peuronen A. et al. // Cr-ystEngComm. 2018. V. 20. P. 1954.
  37. Vershinin M.A., Rakhmanova M.I., Novikov A.S. et al. // Molecules. 2021. V. 26. P. 3393.
  38. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  39. Da Chai J., Head-Gordon M. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 6615.
  40. Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. V. 120. P. 215.
  41. Barros C.L., de Oliveira P.J.P., Jorge F.E. et al. // Mol. Phys. 2010. V. 108. P. 1965.
  42. Bader R.F.W. // Chem. Rev. 1991. V. 91. P. 893.
  43. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. P. 580.
  44. Bondi A. // J. Phys. Chem. 1966. V. 70. P. 3006.
  45. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. P. 5806.
  46. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. P. 2478.
  47. Kinzhalov M.A., Kashina M.V., Mikherdov A.S. et al. // Angew. Chem. Int. Ed. 2018. V. 57. P. 12785.
  48. Bartashevich E.V, Tsirelson V.G. // Russ. Chem. Rev. 2014. V. 83. P. 1181.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (105KB)
3.

Baixar (212KB)

Declaração de direitos autorais © М.А. Вершинин, А.С. Новиков, С.А. Адонин, 2023